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19.(Abstract Continued)

image regions corresponding to a partially occluded object and to produce descriptions of

object boundaries that are less affected by occlusion. In addition, being able to distinguish

between occluding and occluded bpundaries is a crucial step towards determining the three-

dimension position of surfaces.
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a. Objectives.

Our principal objective continues to be the development of a robust computational approach
for estimating the spatial organization of a scene using time varying properties of image
sequences. Under this contract, we have been investigating improved methods for estimating
and interpreting optical flow from image sequences. Emphasis is placed both on what spatial
properties should be computed and on appropriate computational architectures for accom-

. plishing this task.

Three related questions have been investigated in this project.

Estimating optical flow.

What sorts of errors are intrinsic to spatial-temporal gradient techniques for estimating
optical flow? The principal objective of this aspect of the work is to develop a priori
estimates of expected error based on the nature of the actual imagery, and a posteriori
error estimates as an integral aspect of flow estimation. In addition, the research effort
has focused on how flow estimation can be improved based on an understanding of the
nature and magnitude of the errors that are likely to arise.

.%

• " Interpreting optical flow at object boundaries.

How can the analysis of optical flow be used to detect object boundaries? How can the
three-dimensional structure of object boundaries be determined based on optical flow?
The principal objective here is to work towards the development of motion-based seg-
mentation techniques for image understanding. Motion-based segmentation has the
potential not only for locating object boundaries, but also for reducing problems due to
occlusion and for providing three-dimensional information useful for object
identification and analysis.

Robust methods for determining object motion.

How can the motion of object relative to the camera, be determined in a robust,
manner? The objective is to categorize the possible motions into a limited number of
meaningful classes and to develop methods for recognizing instances of each class.

b. Status of research effort.

Estimating optical flow.

We have shown that a major difficulty with gradient-based methods is their sensitivity
to a number of conditions commonly encountered in real imagery. Highly textured
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surfaces, motion boundaries, and depth discontinuities can all be troublesome for
gradient-based methods. Fortunately, these problematic areas can be identified in the
image. As a part of this contract, we examined the conditions that lead to errors,
methods to reduce errors, and the estimation of measurement errors for one class of
gradient-based techniques. By understanding how errors arise we are able to define the
inherent limitations of the gradient-based technique, obtain estimates of the accuracy
of computed values, enhance the performance of the technique, and demonstrate the
informative value of some types of errors.

This part of the project has now been completed.

Interpreting optical flow at object boundaries.

Significant results have been achieved on the problems associated with motion-based
segmentation. Discontinuities in optical flow are necessarily due to surface boundaries
or discontinuities in depth in the scene. Thus, detected edges in flow necessarily
correspond to important properties of scene geometry, where as edges in properties such
as luminance can be due to a wide variety of scene properties. Our approach is based
on understanding the three-dimensional scene structure leading to an edge in optical
flow. As a result, we can simultaneously detect edges and determine important three-
dimensional properties of the associated scene surfaces.

Motion-based segmentation can not only find boundaries that are difficult to locate in a
single view, but it can also provide much more information about the structure of the
scene. Our approach makes it possible to distinguish between occluding and occluded
surfaces at a boundary. Occlusion boundaries arise due to geometric properties of the
occluding surface, not the occluded surface. Thus, while the shape of the edge provides
significant information on the structure of the occluding surface, it says little or nothing
about the structure of the surface being occluded. This technique may make it possible
to link image regions corresponding to a partially occluded object and to produce
descriptions of object boundaries that are less affected by occlusion. In addition, being
able to distinguish between occluding and occluded boundaries is a crucial step towards
determining the three-dimension position of surfaces.

Work is continuing on exploiting these results in a variety of image understanding
tasks.

Robust methods for determining object motion.

Object motion can be classified based on optical flow into categories that are significant
for further interpretation. In our investigations, object motion was divided into four
classes: two types of translation and two types or rotation. Complex motions can be
described as combinations of these types. The descriptions are qualitative, characteriz-
ing the motion in terms of broad classes but not providing precise, qualitative informa-
tion about trajectories. We have shown that under some circumstances, the categories
are detectable using simple differential operations on the optical flow field. Appropriate
combinations of detectors can be used to signal motions likely to lead to a collision
between the sensor and an object in the field of view. By structuring the technique as a
classification operation involving only a limited number of classes, the noise sensitivity

-2-



of differential operators can be reduced. For the situations in which the technique is

applicable, it is tolerant of noisy, sparse flow fields and requires little information about
camera models, motion constraints, or possible objects.

As a result of our research efforts, we discovered that the assumptions required to util-
ize this approach are not sufficiently realistic. We are currently pursuing alternate
approaches to the determination of object motion.

c. Publications.
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An Error Analysis of Gradient-Based Methods for Optical
Flow Estimation

* Joseph K. Kearnel

University of Iowa

Wi/iam B Thompeor,
Daniel L. Bolel

Universitv of Minnesota

ABSTRA CT

multiple views of a scene can provide important information about the structure
and dynamic behavior of three-dimensional objects. To recover this informatior. it i5
necessa to estimate optical flou - the velocity, on the image, of visible points or,
object surfaces. One approach for estimating optical flow is based on the relationship
between the gradients of image brightness. W hile gradient-based methods have been
widely studied, little attention has been paid to accuracy and reliability of the
approach.

We examine the sources of error in estimates derived from gradient-based tech-
niques. By understanding how errors arise, we are able to define the inberent limita-
tions of the technique, obtain estimates of the accuracy of computed value, enhance
the performance of the technique, and demonstrate the informative value of some
type of errors.

1. Introduction.

The velocity field that represents the motion of object points across an image is called

the optical flow field. Optical flow results from relative motion between a camera and

objects in the scene. Methods which estimate optical flow lie within two general classes.
,4..

Gradient-based approaches utilize a relationship between the motion of surfaces and the

derivatives of image brightnes 11, 2, 3, 4, 5, 6, 7, 8, 9, 101. Matching techniques locate and

track small, identifiable regions of the image over time.

For many problems gradient-based methods offer significant. advantages over matching

techniques. Matching techniques are highly sensitive to ambiguity among the structures to

be matched. Optical flow. can be accurately estimated for only highly distinguishable regions.
.This means that floi can onl be determined at a sparse sampling of points across the image.

Furthermore, it is computationally impractical to estimate matches for a large number of

points. The gradient-based approach allows optical flow to be simply computed at a more
dense sampling of points than can be obtained with matching methods.

Tkj., worl was supported by tb(- Air Force Office of Scientific Research contract F49620-83-040
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point, of interest Til gradient approact. ieaa- tk, algorithrm, L icl. art charaterizec. .'

simple computation. localized to small regions of the imag( Tnes, technique cal , a plf-cl

omer tht entire imag( As we shall see it tbt ana)ysis that fclk,% ., thf gradient techlrlqu. 1-

also sensitive to ambiguous area., -- it is impossible to local]. deerminf the motion of b

homogeneous region However, gradient-based estimates are typically availabl, over a
greater area than those obtained reliably by matching. In additioL, the loss of precision for

gradient-based estimates in ambiguous areas can be quantified. Accuracy measurements cat.

be used to weight the contribution of motion estimates in further anal'sVs or to filter poor

estimates from the flow field. These accuracy measurements can be obtained as a by-product

of the flow estimation process and require little additional computation.

While gradient-based methods have been widely studied, little attention has been, paid

to accuracy and reliability of the approach. A major difficulty witb gradient-based methods

is their sensitivity to conditions commonly encountered in real imager). Highly textured sur-

faces, motion boundaries, and depth discontinuities can all be troublesome for gradient-based

methods Fortunate,, these problematic areas can be identified in the image. In this paper

we examine the conditions that lead to errors, methods to reduce errors, and the estimation

of measurement errors for one class of gradient-based techniques By understanding hok

errors arise we are able to define the inherent limitations of the gradient-based technique.

obtain estimates of the accuracy of computed values, enhance the performance of the tech-

nique, and demonstrate the informative value of some types of errors.

2. The Gradient Constraint Equation.

The gradient constraint equation relates optical flow - velocity on the image (t ,t) --

and the image brightness function I(zy,t). The common assumption of gradient-based

techniques is that the observed brightness - intensity on the image plane - of any object

point is constant over time. Consequently, any change in intensity at a point on the image

must be due to motion. Relative motion between the object and camera will cause the posi-

tion of a point located at point (7,y ) at time t to change position on the image over a time

interval 6t. By the constant brightness assumption, the intensity of the object point will be

the same in images sampled at times t and t+bt. The constant brightness assumption call

be formally stated as

Expanding the image brightness function in a Taylor's series around the point (. ,.,t)

we obtain

1( 1---k& +t 1(''f k + --- d +~ it +~ A.0.1. (2)
0: 49P at

A series of simple operations leads to the gradient constraint equation:

4
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* A detailed derivation I! giien bi Horah and Szhunc 13

3. Gradient Based Algorithms.

The gradient constraint equation does not by itself provide a means for calculating opti-

cal fiom.. The equation only constrains the values of x and t W he on a line wben plotted ii-

flow coordinates

The gradient constraint is usuallh coupled with a assumption that nearby points mov

in a like manner to arrive at algorithms which solve for optical flo. Groups of neighboring

constraint equations are used to collectively constrain the optical fiow at a pixel Constraint

lines are combined in one of three ways. Methods of local optimization 15, 6, 7, S. 10' solve a

set of constraint lines from a small neighborhood as a system of equations. Global optimiza-

ion 111, 3. 9 techniques minimize an error function based upon the gradient constraint and

an assumption of local smoothness of optical flow variations over the entire image. The clus-
tering approach 1l. 21: operates globall3, looking for groups of constraint lines with coinciding

points of intersection in fiov space.

We will examine the local optimization technique in detail. Although we will not

directly address clustering and global optimization, many of the conclusions reached here also

apply to thesf approaches Another paper examines some implications of this analysis for

global optimization methods 112J.

4. Local Optimization.

The method of local optimization estimates optical flow by solving a group of gradient

constraint liMe obtained from a small region of the image as a system of iinear equations

Two constraint lines are sufficient to arrive at a unique solution for (% ,t,). More than two

equations may be included in the system to reduce the effects of errors in the constraint lines

The solution to the over-determined system may be found by any of a number of error

minimization techniques.

We will examine errors in the solution of two equation systems. In practice one should

solve an over-determined system by some method of best fit, such as least squares. Th

analysis presented here is extended to over-determined systems in 113.

The pair of equations which we will solve to estimate optical fioA at point
p, ==(z, ,,, ) i

0) I, + x €),, =_ (4)

a+
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Tif gradieit iii the systen (41 RN estimated fron; dis-retfe iae arid %kil! b in~a'-cu-

raif duE to DOL'.- IL the imaging process find sampling measurerrenit error Ahls:. thif %aiue:

or (t. .t lat p, and p, are assumed to bf- tbe samf . The form ujaliob Kill be incorrect Vo thf

extent that optical flow difiers between the two-C pointS We will examine hoM gradient est!-
ruation error and error resulting from hon-constant optical flow leads to errors in the

estimated flo%% vector.

4.1. Gradient Measurement Error.

The estimateE of the intensity gradients 1, , 4, and 1, wil l be corrupted by errors ir. the
brightness- estimate5 and Inaccuracies introduced by samnpling the brightness fUncti'DL

discretely inD time and space. The error in the brightness function is random and results frorm
a variety of sources such aw channel noise and quantization or brightness levels We assumc

thai the brightnes error is approximately additive and independent among neighboring pix-

els. The gradient, estimated from changes in the brightness estimates, will contain a comD-

ponent of random error which is distributed like the error i the brightness functioL. The

random component of the gradient error will be additive and independent of the magnitude,

of the gradient to the extent that the brightness noise is additive.

The brightneSs- function is sampled discretely i time and space and thi ill Intodc
a "ystematic measurement error into the estimates 1, ,1,, and 1, of the gradients. The gra-
dient sampling error depends on the second and higher derivatives of the brightness functi"on

To examine the sampling error in j, we expand the brightness functionj evaluated at

* (.T -4Az ~r,)around the point (x ,t e producing

I~zAz,,) =J~~yt)+ IhAr + 1,,A.- 2 + h.o.t. (5)

where I, I.. are the partial derivatives of brightness in the z direction evaluated at (z 1 ,t)

Rearranging terms we obtain an estimate for the brightness gradient i the z direction:

Tbe error D is defined a, 1, . the difference betw6een the computed and true

values. From (6). we obtain the approximate relationship

Cj 1 .am~ifb-) ~ , 7 .(7)

LikewIse, the sampling error in the estimates.f4adI r ppoiaeygvnb

The sampling error for the spatial gradients depends upon the spatial resolution of the cam-
%* era, AY and AV. and the second spatial derivatives of the brightness function, I. Ir The



s a ri. ii erro fcT' tt, t If ',i,:- gra ad if I , t L' irif, uecec' b% ti f ran , rat- At hr.-

tih. higner ordr derlvatle. c/ th. brightnes functOL. over Lti

\Vt car. expres: (,,Imm Ps; purel> 11 terms of spatial derivatives aed rnot i::.

Dijfieren, 1a121g the. gradierit constraint equat oL (3) -ith respet t , I .c and t u obtall: t

following three equation-

SOx Ot
1, IF + I P (10]

I

'i 1,, Is 1 - --I , f -+ - g I 1 1,2

Where the second derivatives of the brightness function exist and are continuous, the left-
hand sides of equations (10) and (11) can be substituted for 1,, and Ir in (12). Collecting
terms we see that

1,t1 In It t zaz

.a ' O if 1, a t at I, =1 I,

The first term in (13) depends upon optical flow while the rest of the left-hand side depends
upon the derivatives of optical flow over time and space. If optical flow is approximateh

constant in a small neighborhood and approximately constant over time at each point on the

image thei,

Note the similarity between (6) and (14). We have derived a constraint equation for second
derivatives that is analogous to gradient constraint equation.

Without los of generality, iwe can rotate our coordinate system so that the flo- vector

at a point lies along the x-axis. In the nem coordinate system we have

It is evident from (15) that the magnitude of 1 depends upon nonlinearities of the bright-

n ess function in the direction of motion and the magnitude of motion.

In summary, the systematic errors in the gradients which make up the coefficients of (4)
ar. given by (7), (8), and (9), In general, the systematic error in estimating 1, is influenced

t" by the magnitude of optical flow and the derivatives of optical floM and the first and second
.4i-1 . Ispatial derivatlives of brightness When the axis of coordinate system is aligned withj motion

and optical flou is nearly constant over time and space we can characterize the systematic
error in the temporal derivative by
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iF t:.erf is sigrnificant optical fio". the error giveit b% (16) car becom quilt larg, 11.

regions %hicl contain nonnearities iL thf brightnes function and substantialik alter our

estimate of 1,

4.2. Nonuniformity in the Flow Field.

The estimation scheme we have been analyzing assumes that velocity on the imag,

plane is constant in some small neighborhood This will be true only for very special surface'

and motions. When optical flo- is not constant the method can provide a gxood approximi-
4 ' tioD where 60oA Varies slowly over small neighborhoods

The true set of equations in (4) should axctually b(,

Is i 4 I - ('

where the actual fiow vectors at points p, and pj are (t ,t) and (v +At ,t +At ). respectively

and the gradients are estimated at points p, and pi. The difference between the true solu-

tion and our estimate can be treated as an error on the right-hand side of (17) by distribut-

ing the multipbcation on the left-hand side of the system and rearranging terms a-

) +(;4, I = - ;

wher(

,,,,=[1, u), pYutx,'

Thus, the error caused by violation of the constant flow assumption can be treated as an

additional error Mi the estimate of I,.

To examine the significance of this error, we will consider size of i, relative to Ii".

But first we will convert to vector notation. Let

[1a A, (20)

For the constraint equation at pi, we know from (17) and (19) that

,,o'_ _ (21)

1J AW 11 cosC) (22)

where 61 is the angle between the gradient vector, g,('), and the local change in optical flo,,
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-ia relative error u , depends upon the relative lengths of thf vectors . anc A. ar c

tn degret t.o.%hicL each s magnified by the spatial gradient In general the oricrJtat,: ns C/

the spatia! gradient. optical fhov. and the local change iI optical flog will bf independernt
So the spatial gradient will or the average magnify tbe flo%% vector in the sam, proportio, a.

the change of flom vector. Therefore, on averagt, we expect the relative error IL 1, to b(

strongl) related to relative magnitudes of the floA and change of flow vectors

In most scenes. flou will vary slouli over most of the image. At surface boundaries Wt

car, expect to frequently find discontinuities in optical flo" due to discontinuites ir motior.

or deptL. Here, the variation in flom will contribute , substantial error and flov estimate.

will usually be quite poor. However, much of the image will consist of smoothly varying sur-

faces When neighboring image points lie on the same smooth surface, flow wIl generall) be

similar and hence, the error contributed by variations M flow will be small

IN'( will consider an example which allows arbitrary three-dimensional translation of b

planar surface to demonstrate the important factors influencing the error contributed bN

variations in optical flow. We consider two neighboring image points that lie or, a surfacc

translating with velocity (U,V1,W) in three-dimensional space (see Figure A.1). Let the sur-
face be defined by the planar equatioL

Z(X,Y) - + oX + fY. (23)

In appendix A we derive the following approximate bound

1 -t. I(0,B)I (24)

where.

tan = () (T "60 ,1 )25)f

The angle -1 is the angle subtended by (Ax, Ay) with a focal length of f ; this is simply the

size of the neighborhood measured in degrees of visual angle. The length of the change-of-

flow vector relative to the length of the flow vector depends upon the size of the neighbor-

hood, the slope of the surface viewed, and the ratio of velocity along the line of sight to velo-

city perpendicular to the line of sight.

Recall that the value given by (24) represents a rough measure of the proportion of

error on the right-hand side contributed by variations in optica floM. If the neighborhood js

small we expect random errors in the temporal gradient to usually be larger than the error

caused by flow variation. The gradient measurement errors discused in the last section may

lead to much larger degradation. So, for most of the image the error caused by variation in

flow should not constitute a problem. However, at surface boundaries optical flow can

change dramatically, especially when object motions are allowed. Here, the local optimiza-

tion result will be a very poor measure of optical floA.

1.'.
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Ttfaccuraci o" tb( e-stin-arte- i and i -All depend oi the measurmeint error - ir

gradit-iit cons-zraint equations and the error propagatiori cba&r.CerLstic!s o! thf linjear SYSTE.h

ale sy.stcrr. of linear equations L, vern sensitive to smal'i errors. iii tht coefficieits C'.
right-hand 5i6t it is- said to be ili-conditioned. If the spatial intenisity gradjel LE Change 611) 1.

then, tb( linear sVsterm Will Contain Constraint lines that art nearly parallel A!s a consf--

quence, the system will be nearlb singular and small error-, in the gradient measurement'
may result ILI large changes in the estimated hlow value. We will find that the conditioningF

of the linear Eyste rn largely depends upon nonlinearities in, the brightness- fUnctioL which Ear

perpendicular to the brightness gradient

If the gradients are known exactly and optical flow is constant thei;

Gw -b (26)

where,

U0) w= and b= (27)

As before, the rows of G and b are taken from a point pi and its neighbor p. The 'vectorw
Wil beIL rro v)thedegeethat the gradient measurements are inaccurate and optical fioim

varies between points p, and p, . The previous section showed that the error accrued when
v and i are Dot Constant is the same as that which wowild 6e obtained if the b vector is suit-
ably modified AS in (IS). This error will be absorbed on the right-hand side of (26). Thus.
the systemn which is actually solve is

where,

Ep 6b ,) and &'= .(29)

The errors in the spatial and temporal gradients arise from both systematic and random

measurement errors.

Anumber of measures Of conditioning have been proposed 114 . The most wie I se
* index of conditioning is the condition number, cond(), which 1.5 defined a-

eond (G) I!G II G-' jj (30)

* for a matrix of coeffIcients G. The condition number roughlY estimates the extent to which

*relative error-, in) the coefficients and the righthand side are magnified III the es;timate- of

*optical flo-A. For the problem at band. the conditioniDg Of the matrix G I!, determined bN
* the nature Of the spatial brightness function over the interval (p, ,pjl

The inverse of G can be directed calculated a.,
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[ l!g" I hgt') Ii D -I(" ..,Is)} (32,

W "here g(') as the spatial gradient vector at pi and i is the angle between g" and 9

Before we can evaluate the condition number we must select a matrix norm. We will
use the Frobeiius Dorm'. We will continue to use the [! - 1I : norm to evaluate vector norms.
From the definition or j[ J and the results above we hav(

cond (G). 9g (33)€o~a(C) = g(') g"IIs ) 11 sine'

Sn ,( jg " )11 11 g(') 11

The magnitude of cond(G) depends on the orientations and relative magnitudes of the
two spatial gradient vectors. The value of cond(G) is minimized when the spatial gradients
are perpendicular and have the same magnitude. As the spatial gradients become more

nearly parallel the magnitude of cond(G) is increased, and hence, error propagation is wor-
sened. Increases in the relative difference in the magnitudes of the spatial gradients also
cause Cond(G) to increase. The magnitude of this effect will not usually be important. If the
neither of the gradients is very small, then the relative sizes of the gradients Will not differ
enormously. The gradients will be poorly estimated where they are small, so for multiple
reasons estimates will be error prone in these regions.

The most important factor determining conditioning is the angle between the gradients.
Where the gradients are nearly parallel, conditioning will be a problem. Thus, if both points
lihe along a straight edge, we cannot obtain a solution. (This is an example of the aperture

problem 111]).

Some higher derivatives of brightness must be large for there to be a significant change
in gradient orientation over a small neighborhood. Let Ag be the difference between the two

gradient vectors. We can expand the gradient in a Taylor series

*_ (+ ) '(,) A + .o.t. (35)

Consequently,

Ag- C j( p(II (36)

The Frobenius norm. F, is defined as the square root of the sum of the squares of all th(
elements The Frobenrus norm can be used to bound the more familar I) ,? norm 115, It can bc
shown that

-Illr < III: IIlr.
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g' If optica! fowo L- to be accuratel) estimated mn a srnaL regC'L around p" .tlL a ,:

one component of thr second derivative perpendicular to the gradient must bt largt Ther

must be at least some direction in which we can select a neighbor so that the gradient orexI-

Lation gl)'. will differ from g "

4.4. Combining the Sources of Error

We nom face h dilemma We have just shown that some component of the second

derivative must be large to minimi7e error propagation. However, we earlier showed that

sampling errors in the gradients were proportional to the the magnitude of the second deriva-

tive. There is a tradeoff between the gradient measurement errors and conditioning. The

problem would not be too serious if we were only concerned about errors in the spatial gra-

dients. If we let the sampling interval be reasonably small with respect to the neighborhood

from which we select our equations, we can potentially satisfy both goaLs -- the gradient can

change slowly from pixel-to-pixel but the total variation over the neighborhood can be large

enough to allow acceptable conditioning.

A serious conflict can arise in the tradeoff between conditioning and sampling errors in

the temporal derivative. Recall that the systematic measurement error in 1, is proportional

to nonlinearities in the spatial brightness function (13). To achieve acceptable conditioning.

the spatial brightness function must be nonlinear in some direction. If optical fhow is

oriented in this direction, then the condition number and measurement errors will be

inversely relat.ed. Increases in the magnitude of the second spatial derivatives will reduce the

condition number and increase the measurement error. Note that there need Dot be a

conflict; optical flow can be perpendicular to direction in which the gradient orientation is

varying.

The problem is heightened by the sensitivity of measurements where the flow vector is

large. The systematic measurement error in the temporal derivative increases as the square

of flow magnitude (13). Where flow is large, even small nonlinearities can contribute

significant measurement errors. However, where object points are stationary or moving

slowly, the measurement error in the temporal gradient will be negligible and most accurate

estimates will be obtained the gradients are not small and vary rapidly.

As an illustration of the interplay between the concerns of conditioning and measure-

ment error, consider an image painted with an isotropic texture. If the region is stationary

then a large amount of detail will be desirable to minimize conditioning. If optical fiow is

significantly greater than zero, then too much detail will lead to unacceptably large measure-

ment errors. A balance must be struck between these two sources of error.

The conditioning of G can be improved by using a large neighborhood. The risk in

choosing neighbors over too great a distance is that the error due to non-constant floK can

become very large. If the neighbors lie on a single surface the contribution of errors due to

non-constant flow will usually grow slowly with neighborhood size. But if neighbors lie on
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becomes more bkel% thba neighbor. will lit scroe.' a surfar-e bounda ' ai 1 d thi dfiertIic. 11

optical fiou' will lead t signifcant errors

Tbe total error in thf flo% estimate is determined bi the characteristics of thf optical
foi field. the nature of the brightnes, function. and the selection rule for constructing th,

linear system The sources of error are summarized in Tabh 1.

Error Source Determinants

I Gradient Measurement Error

(a) random (1,II ) (i) V$ sensor noise

(ii) Ti quantization noise

(b) systematic (Jr) (i) J1 nonlinearities in the brightness-
function in the direction of

optical flovk

(ii) 11 optical flow magnitude

2. Non-constant FloM (i) 1 neighborhood size

(ii) ft surface slant

(iii) H ratio of velocity along the

line of sight to velocity

perpendicular to the line

of sight'

3. Ill-conditioning (i) tL neighborhood size

(ii) 14 sin of the angle between the
spatial gradient vectors

(ii) 11 relative difference in the
magnitudes of the spatial

gradient vectors

error increases with determinant

14 error decreases with determinant

• for translating surfaces

Table 1. The sources of error in local estimates of optical flow.

These factors interact in a complex way to determine the accuracy of the local optimization

a-A
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5. Algorithm Extensions Based Upon the Error Analyski.

W e next consider bou knowledge about the causes of error, can be used t, reduce error.
% and introduce techniques to judge the accuracy of estimates The improvements in perfor-

anm&ce are based upon parameter selection and preprocessing of the image to extract thf
most information from a region while minimizing the intrusions of error. A method of iterb-
tive refinement 15, 16 is also described

By -examining the image sequence for the conditions which lead to errors we can judgt
the accuracy with which estimates can be made before the estimate is actually made. Exami-
nation of the flow estimate itself can provide additional information about the precision of
the estimate. Together, a priori and a posteriori estimates of accuracy provide a useful
heuristic for evaluating the precision of optical flow estimate-

7
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5.1. Error Reductionr Techniques

5.1.1. Smoothing

Bjurring the imagt will reduce nonlinearities in tht brightness functIoL alld cons,-

quenth diminish the systematic error in the gradient estimates Blurring will aLs, worseo th,

propagation characteristics of the linear system causing random measurement errors and tb,
errors due to non-constant flow to be magnified Hence, blurring is desirable only in regions

where the systematic error is predominant.

As noted in the last chapter. the systematic error in the gradients depends upon thE

nonlineaiity of the brightness function over the sampling interval. For the temporal gra-

dient, the svstematic measurement error depends upon the linearity of the brightnes- fun(-

tion over the region which moves past a point of observation on the image and the variation.

of optical floN over time and space. Blurring will be most effective in portions of the imagf.

which undergo a significant motion and contain large nonhnearities in the brightnes fun(-

tion. The degree of blurring should be sufficient to approximately linearizt the brightnes-s

function over the region of translation.

The damage which blurring does to the conditioning of the linear system caL be

counterbalanced by increasing the size of the neighborhood over which the system is con-

structed. The risk incurred by enlarging the area from which the constraint equations ar(

drawn is that the motions of the points may differ significantly, as could happen if points lied

on two different surfaces. The selection of the radius of blur and the neighborhood size must
be made judiciously so as to avoid increasing the error in the solution vector.

5.1.2. Over-determined Systems

Until this point we have ignored the problem of selecting the direction in which the

neighbor is to be chosen to form the linear system. From our previous discussion of error

propagation it is clear that the choice of direction can dramatically affect the error in the

optical flow estimate. One way to circumvent the difficulty of choosing an appropriate direc-

tion is to construct an over-determined set of equttions from points in many directions The
over-determined system can be solved by minimizing the residual over possible values of opti-

cal flow. The choice of the norm to be minimized and the minimization scheme may be an

important determinant of the error, but are not analyzed here. As with two equation sy-

tems, conditioning will be important for over-determined systems and conditioning will b(
related to the same characteristics of the image as in the two equation case. Another

approach is to perform the analysis separately in a number of directions and then seek a coil-

sensus among the solutions 117j.

m
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actuhi bou Our derivatior abbreviates an &Daly is pres.ented [). 1'aquixn hrid Dub-zJ W,

dimensional x ,j (t-space Let be an estimate of d Giveni a displacement estirnat'

xt[-component of displacemet]
d At] s-componenz of displacezrnent (37)

[At] I -Component of displacementJ

i*e can estimate optical flow by (i if)

Tevector sa ntvector ini the direction of tbe estimated displac-emelnt Tt,.f

radienlt Of I in this direction isL

11i f1 J lI"

~ d * I. W A (usinF (3)) (3 Q)

a h (4+6)At (40)

vwhere h i.- and ht =f-t- are the errors ina the estimated flow velocities;. FInaI 3 , Me tget
an, expressioL that relates the error in the displacement estimate to measurable brightne&

gradients-

i l a=hhAt +J,kt A( (41)

[KAt]
Ad dd bi AtJ(4)

[AtJ

We cars compute at, estimatc of the quantitN (41) byv using thu ThN'Jor CXpaJSioL

J(zT +4- At ,+i At ,t1 -4-At ] (2- ,j t~)~i ~ (43)

FZ .r
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The Dem constraint equation (41) is a more genera! form of the gradient constrail
equation. The more general form relates the gradients in an arbitrary directioL t the spatia,
gradients and optical floi,. If the displacement estimate is (0,0,At ). then la I,.

We can use the general form of the gradient constraint equation to refine a. estimate d
by solving (44) for Ad This process can be performed iterativelI to find successively better
estimates of optical floiA. An improvement carn be expected, on the average. whenever suc-

cessive registrations are closer to the true displacement vector.

I Ad, <_ I1 Ad, ..i ..2 (45)

The improvement arises from successively better estimates of Ia As was demonstrated ear-

her in equation (13) the systematic error in the estimate of temporal derivative grows as th
square of fiok magnitude. The same relationship is true for direction derivativ ]a and the

flow difference in the general constraint equation.

Solving for the difference between an estimate of optical flow and the true optical fhow
is computationalli equivalent to registering a portion of an image pair and estimating the
change of position in the adjusted sequence. For this reason the technique has been called

iterative regi.tration 15P The estimate of optical fhom may be derived from estimates made

at some previous time or from prior processing on a single frame pair.

Note that if the inequality of (45) does not hold, then the error might be expected to
increase. If an estimate of optical flow is poor then the refinement effort may lead to at even

larger error. The next section is devoted to method, to evaluate the quality of optical flow

estimates. A measure of the accuracy of a flow estimate can be used to judge whether or not
the estimate should be used for registration. Alternatively, the degree of registration can be
base on the confidence put in the flow estimate, the more accurate the estimate is judged to
be, the more that the frame pair should be adjusted in the direction of the estimate.

The iterative registration technique can be combined with variable blurring to producc
a coarse-to-fine system for estimating optical flow 153. Flow is roughly estimated witil an
image sequence which has been blurred so that the brightness function is approximatelv
linear over areas the size of the maximum expected displacement. The coarse estimate of
optical flow is used, at each point, to register a small region of the image at a finer level of
resolution. This process is repeated at successively finer levels of resolution.

How much advantage can be gained from iterative registration? The spatial variation
of optical flow will not be affected by registration. Thus, the error due to incompatibilities
among equations in the linear system is unaffected by iterative registration. Also, the esti-
mate of the directional gradient will contain some amount of random measu-ement error

even if successive frames are in perfect registration. The propagation of these errors depends
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constant fBoN through Iterative regiMtratiOL

WVhilt preforming b eoarse-to-finr registratior, the degref of blurring at eacl, stag'

should be appropriatf to the expected error in optical fo-A at the next more coarse level of
anah'si- I. the absence of kDowledge about the motions of individual points the blurring

must be performed uniformly across the image While the error will, on the average, be-
.e reduced for points which translate significantly, the error will tend to be increased for pointF

whicL are stationary or move verv litth. No benefit is obtained by linearizing the brightnes

function.at.stationary regions and the error propagation characteristics are worsened Som
of the accuracy lost at stationary regions during coarse processing might be recovered at fine-

levels but. in general, the best estimates could be obtained at a fin( level without registra-
tion. In the next section methods are developed to estimate the accuracy of optical flow esti-

mates This information can be used in the coarse-to-fine system of iterative registration tc.

judge whether an improvement has been obtained at each level. A priori estimates of the
magnitude of flo-A are also developed in the next section. The iterative registration technique
can be improved by adapting the technique to knowledge about the accuracy of estimates

and the magnitude of motion.

5.2. Estimating Error

Many of the factors which lead to errors in the local optimization estimation technique
can be identified and measured from the image. The error propagation characteristics of the
linear system can be estimated from the matrix of spatial gradients. The degree to which

relative errors are magnified is indicated by cond(G). Regions of the image for %hich the
propagation characteristics are poor will be very sensitive to small measurement errors in the
gradients The optical flow estimates obtained in these regions are likely to be inaccurate.

The systematic measurement error in 1, was shown to depend upon the linearity of the
brightness function in the direction of motion (13). One way to measure of the nonlinearity

of the brightness function is to compare the spatial gradients of brightness in successive

frames 12, 5>. If 1, (z ,y ,ty) is significantly different from I, (z ,V ,t +4t) then it can be inferred

that the estimate of the temporal gradient is likely to be in error.

Once an estimate has been obtained we can bound the error by referring back to the
image. The following aposteriori error bound can be derived from (44):

r II(h')* > > /(x+i t'v+iAtt+At)- J(z,y,t 2 ) (461

If the norm of the spatial gradient is not too small, this will provide a good measure of theL magnitude of the error in the flow estimate.

If an over-determined set of equations is used to estimate optical flow, then measure-
ment errors in the gradients and incompatibilities among the constraint equations due to

I --:--- c . - .- . - . - . . - - - - - - " - - .- - -
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G , - b = r (47,

%here C.- v thf estimated optical fhou and r IS the residual A large residual indicates tha"

substantial errors exist in the system and that the estimated tloA vector is liey to be ma'-

The residua) vector will be especially large at occlusior, edges where the change in fio,

us discontinuous It has' beer, proposed that the residual error be used -- an indicatioD of tbf

E-:-. pr~eicofan ccusin dgeIl. To be identifiable, the change in optical fioA cross aR"occusoL edge must lead to an error which is greater than that normallv encountered fron.

other maueeteri-A threshold oLthe residual mutbe established wihU11Dt

mally be exceeded only at significant discontinuities in the flow field. The error accrued from

a change in the fiou vector is equivalent to a measurement error onl the right-hand side of

the local optimization system. Since the equivalent error on the right-hand side is magnified
b% the size of the spatial gradients, the threshold for identifying large residual errors should
be adaptive to the spatial gradients. Likewise, it was shown that the systematic measure-

ment errors in the gradients were related to the second derivatives of brightness, so th
threshold on the residual should depend upon the second derivatives, as well

5.3. Methods

The gradient-based approach is demonstrated with two versions of the local optimiza-

tion technique. The basic local optimization method performs a least squares minimization
on an over-determined set of gradient constraint equations to estimate optical flow at each

point. Each image is first blurred with a gaussian blurring function. The standard deviation
of the blurring function used to collect the data presented here was about 2 pixels. The blur-

ring serves to reduce the noise in the image and linearize the brightness function.

Constraint equations from a group of neighboring points are gathered to produce an
over-determined system of linear equations of -the form

GW = -b (48)

where,

I,11.1, IA

G * . ,= andb- • (49)

15 1, ] A

Each row of G and b, is evaluated at a different point. To insure that the equations ar(
sufficiently distinct we selected neighbors from a 5x5 windo centered around the point to

be estimated.
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BOIuIDL if found b' minimizing the residua! veCL.or r. def n ,r. (47) T'et fo-, estim,te i

ChOSeL tv, bf the vector ,' whicL minimizes. some criteria function of r In our C)Ti -A

ninimiz' 1 r 1..j by letting

G'b• (50;

where G' is the pseudo inverse of G 115,. Calculation of the pseudo inverse requires the

inversion of the 2X2 matrix G'G. The inverse will rot exist where the local gradients do not
sufficiently constrain optical flog to allow for an exact solution. In this case the confidence

of the flow estimate is set to zero and t and , are undefined

A confidence is assigned to each flow estimate on the basis of

(a) an estimate of the measurement error in the temporal gradient.

(b) an estimate of the conditioning.

(c) the size of the residual vector r, and

(d the a postcriori bound given by (46)

The importance of each of these factors in determining the accuracy of estimates is diS.

cussed above. That analysis does not, however, provide us with a formula for estimating the

total error in the flow vector (t ,t). We must find a means to combine several factors which

each indicate the presence of conditions which can be lead to errors.

Recall how each factor outlined above relates to the error in (t ,t,). The systematic

measurement error in the temporal gradient depends on the hnearity of the brightne&s fune-
tion. The change in the spatial gradients between successive frames provides an indication of

the hnearity or the brightness function over the region which has translated by a point 5.

To obtain an estimate of the contribution of this error to errors in w, we divide magnitude of
the change in the spatial gradients by the magnitude of the spatial gradient.

The error propagation characteristics of the linear system GC) = b can be determined by
examining the matrix of spatial gradients. If linear system is ill-conditioned, small measure-

ment errors will tend to produce large errors in (i,,).

The residual vector indicates the degree to which the estimated flow vector jointly
satisfies the system of constraint equations. But the value of the residual vector is not easy.

to interpret because the size of the residual is dependent of the overall magnitude of the
brightness gradients. We normalize the residual by determining, for each equation, the

minimum distance between the estimate and the equation. This is equal to the distance

between the estimate and the constraint, equation along a line perpendicular to the constraint

equation that passes through the estimate. The average minimum distance is used as, an

index of the degree to which the equations are satisfied.

Once an estimate ha., been obtained, the a posteriori error bound given by (46) can be

used to judge the accuracy of the estimate. In locations w'here this bound is large the cont-

puted optical flom vector is likely to be in error.

LN - - - - - - - ---- -. , " • .- " " - . "
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Vhriat c'r. iL thef spatia gradient and the Conditioning Of G mebsure conditions 'AIhi F,-,

likely to lead vo poor. estimatesE nonlinearity In the Spatial brilghtne&s function is phirticulari.%
F troublesome( for gradient measurement "nd the conditioning Of G conVeys the error propagh-

t1oL Characteristics of the tinear syst-em. Even though the four estimates are not independeint
vke found that the%- Aere bes-t wrated a-- separate sources of informaIn and best combined
inuitiplichtivel.% We exarmined E, number of combinationl rules and found that the re!-ult,
',ere not higHN Sensitive tw the particular rule for comnbining error estimates A meaSUre cf
confidence, %%as obtained frorm the invers-e of the error estimates, The confidence value car b

interpreted a., a rough measure or the likelihood that an optical flo estI Mat e Lt C01're-t

5.3.1. Local Optimization with Iterative Registration

Tne simple method of local optimiztion can be extended by a method o' iterative
re'finement FioA estimates are used to register the frame palr onecX ucsieieaiic

the estimatlior procedure. It was earlier shownL that the measurement error, inl the tempc'ra

gradient Could be Significantly reduced if the registration locall' reduced the displ1a.!emenjt or
thf imagt frame-- Since the optical flo' hield vill usuali% contaiin variatiCons, the- prjce

reg .istration -AiE1 differ across, the image. To obtain. a consistent linear systen.. u small regioi.

of the first frame must be regi'stered with the second frame OL the basis of th( predicted filow
at the point for wh'ich optical hlow is- to be estimated A SYStem; of linear e Uati'OnS is co1-

* structed from the registered region.

Thi' proceSS Canl be performed iteratively, using the optical fioA estimates, at the prcvj-
ous stage to register the frame Pair On the next iteration It is important to emphasize that,
at each stage. the registration can only be expected to improve performance 'when the ne~k

* registration i- an improvement over the registration InD the last itrto.Otherwisete e
estimate of optical flow will, in general, be vsomre tben the previous estimate. Since it is.

desirable to register the image only where the flowA estimates are believed Wo be correct. -,,(
register in Proportion to the confidence In the flow estimate A floit field of zero fioA vect-ors

is used to initialize the first iteration_

The iterative registration technique is employed witi. variable blurring t'o produce

coarse-to-fine system of analysis. Images are blurred wAith a Faussian weihting functioi. In

early iterations the standard deviation of the gaussian w-eighting function isl large The stai!-
*dard deviation of the weliting function 1.s reduced in each successive iteration. At eaci,

level, the radius of the blurring function Should be large enough1 to guarantee that the bright-
ness~~ ~ fucto isapoiaeylnear over the maximumn expected flow from the registered

images.

The size of the neighborhood from wNhich the constraint equations are selected must

depend upon the amount wkhich the images are blurred. At a coarss- level of analysis ther( i'

-'
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.. oning o! t h linear s'ster * if. deg(. f rat'

Our systen. corjtain four iterations hLic corresfKpn t,- four ipveLs of coarsenes- T',

neighbor siz and the value of thf standard deviation for ttb aproximatio. to, the gauss~a

VeCgbt1ng function ar( given it, table 2 for each of the four 1teraT)ons-

Iteration Blur Radius e Neighborhood SIV'

l 7 (

2 4
() 5 4

4 2. 2

Table 2 The coarse-to-fine analysL

A difficulty with the coarse-to-fine system is that the fiom estimates for stationary and

slowl. moving points mad( at coarse levels may be worse that, the initially assumed zero vec-

tor. To insur that the neiA flow estimate made at one level L5 not worse than the value

input into the level, we examine the error bound giveri by (46) for both the initial and neIW
estimates. If the error bound for the new estimate is significantly larger than the bound for

the old estimate, it is ignored

5.4. Results

The two methods described above were tested with the two image pairs presented in

Figure 2 In the Eirst sequence the camera was stationary. The two toy trains in the center
of the first image move toward each other in the second image. The second sequence simu-

lates a view from an aircraft flying over a city. The scene is actually a model of downtown

Minneapolis. (This picture originally appeared in Barnard's thesis t18'.)

The optical flow fields obtained with the simple local optimization technique are shown
in Figure 3.a and Figure 3.b for the moving trains and flyover scenes Associated with each

vector i a confidence in the correctness of the value. A threshold on confidence was esta-

blished which produced a reasonably dense sampling of mostly correct values. Only vectors

which exceeded 'he confidence threshold are displayed. The resulting field was too dense to

clearly display the entire field. Consequently, only 20% of the vector fields are shown in Fig-
urf, 3

The results of the coarse-to-fine method of iterative refjrement arc sho%%n in Figures 3.c

and 3.d. Confidence thresholds were established which produced vector densities N hich kert

comparable tc that obtained with simple local optimization Hothi techniques produc( rea-

sonably accurate rcsults with thf moving train sequence.

* .".
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th( flyover sequrncn T sirripi k-,ca? optirnzationj mett oc' produces & larg rurnt.f- of

errors ever for the relatively spars sampliDg of vectorm displayed in, Figure 34, Tne ,*-xh

of iterative registratiotn generated many fewer errors in held. which are mucd morf d(ris,

than that obtained with the simple local optimtzatioL approwi

Note the areas where very fem- vectors are displayed Optical flow if- poorl% estimated it,

thesa- regions and lom values of confidence are asigned to the estimates obtained thert Tbe

problematic regions are usually fit into one or more of the following characterizations

1 largely homogeneous regions,

2. highly textured regions which are moving, or

3 regions which contain large discontinuities in the fbom field.

Optical flow estimates obtained in homogeneous areas are likely to be in error because of the

poor conditioning of linear systems constructed in these regions. The temporal gradient is

poorly measured in highly textured regions which undergo significant motion. In regions

Which contain large discontinuities in the flow field the temporal gradient is poorly estimated

and the systems of equations from the region are likely to contain inconsistencies.

The success with which confidence estimates predict the accuracy of flow estimates is

demonstrated in Figure 4. The flov, field produced by the simple local optimization tech-

nique with the moving trains sequence is displayed in with a iow threshold on confidence in

Figure 4.a and a high threshold in Figure 4.b. As before, only 20% of the vectors which

exceed the threshold are displayed. Similar thresholds are shown for the method of iterative

registration in Figures 4.c and 4.d. For both methods confidence provides a reasonable index

of the accuracy of flow estimates. A sparse sampling of accurate estimateE exceeds the high

confidence threshold. W4hen the threshold is lowered, more dense fields are obtained with a

significantl\ greater number bad vectors.

5.5. Summary.

The gradient constraint is a powerful tool for the analysis of dynanic imagery. Careful

examination of one gradient-based technique led to a number of conclusions about the causes

of errors, provided support for techniques to improve estimates, and indicated methods by

which th- accuracy of estimates could be judged. This analysis suggests that optical floA

estimation should be adaptive to the nature of the brightness function and the characteristics

of motion in a region of the image

The results demonstrate the feasibility of measuring the quality of optical floIA esti-

mates. Gradient-based techniques are susceptible to a variety of problems and tend to pro-

duce very poor estimates in troublesome areas of the image. Without accurate estimates of

confidence, good estimates can not be distinguished from bad and gradient-based techniques

are of ittl] use. ThiL work emphasizes the importance of understanding the mechanisms

which underlie computational methods. An awareness of the strengths and weaknes.se of
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Appendi A. Optlcal Fiou I'ar2*010On

* Several papers have examined the relationship between the thre(--dinensiona.! mWoo Of

objects and observers and the characteristics or the optical flow hield. We will consider all

example which allows arbitrary three-dimensional tranSlation Of a planar surface to demoni-

strate the important factors influencing changes in optical flo%% over the Image.

Let'th-e three-dimensional coordinate system be attached to the camera as in) Figure A.)

which is1 redrawn from Longuet-HigginDs and Prazdny 119". All motion is associated with tbe

camera. Let U, V', and W4 be the translational velocities of the observer in the X, Y, and 2

directions. Vi-hen Motion is constrained to translation, the components of the three--

dimensional velocity vector are

X1 =-[ Y' =-' '==W (A-1)

Using a perspective projection, the position of an object point on the image is related to its

three -dimensional positioni by

_ (A.2)

where f is the focal length of the camera. Velocity on the image plane, (W IV), at a point

a ~ s''(A. 3)

Substituting from (A.2) into the right-hand side of (A.3) and differentiating we obtainl

f 2 (A 4)

* and

r=~f+ -Vc 1 '~~"(A.5)

Consider a point Pe on) the surface Of R Tigid body Which Projects to Pi, On the imag.

Wc orient the coordinatc system so that Po lies on the observer's line of sight. The three-

Thus coordinate traxsformatior L, not strictly correct for a planar retina aw picture in Figure A

.5. The change of coordinates car, be justified in several ways It can be assumed that the retina is

globally spherica! but can locally be modeled aw planar Or, it can be assumed that the distance of
pofomte nLL sufficientl) small relative toc the focal lenigth that the distortion introduced b)

the transform wil; be minima! Or finally, we can simply restrict our attention to point-salong the

line of sight
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for points o, the surfa( near FE.

Followmig Longuet-Higgins and Prazdny, we introduce the dimensionless coordinate

The components of optical flo% formalized in (A.4) and (A.5) can be rewritten St

,= -III-4 2.1i _.j (A.F,.

and

The surface is assumed to be planar, aco the derivatives of u and v with respect to :. and )
are well defined. At the point P0o wherer --- p =: z 0, * and r are

S --- " and r=--i-V(A.IO)

The derivatives of w and v are given by
OU+14" (A.)

A " A "
" ad t, f--- (A.12)

and, t, =' R ,

since

z, - a and zy=- . (A.13)

Recall that the error incurred by assuming constant flow could be treated as measure-

ment error in 1,, on the right-hand side of (18). The magnitude of this error, relative to I, is
strongly dependent on the ratio of the magnitude of the change in optical flow to the magni-

tude of the flow vector. We can Dow express the ratio of change-of-flow to flow in terms of

the three-dimensional parameters of shape and motion, and the viewing angle. The changf

in optical flow between two points separated by (Ar ,Ay) is

(Au , A) (Art,, -+ AN, Art*-+ Ayt,. (A.14)

Inserting the appropriate terms from (All) and (A.12) into (A.14) and dividing by optical

flow as given by (A.10), we arrive at an expression for the ratio of change-of-flov% to flow at a

point

+dIi(A 15).
Af f
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t t, (A.17)

wher(,

11[& il (A .1 )Stan _"i jt.Yj A.

f

The angle -7 is the angle subtended by (AzAp) with a focal length of f thic is simply the

size of the neighborhood measured in degrees of visual angle. The length of the change-of-

flow vector relative to the length of the flo% vector depends upon the sizc of the neighbor-

hood, the slope of the surface viewed, and the ratio of velocity along the line of sight to velc,-

city perpendicular to the line of sight.
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Figure 2. The sampled image functioL.

Figure 2. Image Sequences.

Figure 3. Optical flov estimates.

Figure 4. The accurac. of confidence c:stimates. Optical flou
estimates exceeding low and high thresholds on
confidence are displayed.

Figure A.1 The camera-based coordinate system,.
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Dynamic Occlusion Analysis in Optical Flow Fields

WILLIAM B. THOMPSON, MEMBE R, IEEE, KATHLEEN M. MUTCH, MEMliIR, IEEE,
ANI) VALDIS A. BERZINS, MLMBl.R, IEEF

* Abstraet-Opticalflowcanbeusedtolocatedynamicocclusionbound- The technique is extended so that a determination may be
aries in an image squence. We derive a, edge detection algorithm sensi- made about which side of a dynamic occlusion boundary corre.
tive to changes in flow fields likely to be associated with occlusion. The sponds to the occluding surface. Such a determination isof
algorithm is patterned after the Marr-Hiddreth zero-rossing detectors
currently used to locate boundaies in s"a fields. Zero-crossing de- great importance for interpreting the shape and spatial orgainl-
tectors are extended to identify changes in direction and/or magnitude zation of visible surfaces. Results are demonstrated on real
in a vector-valued flow field. As a result, the detector works for flow image sequences with flow fields computed using the tokenboundaries generated due to the relative motion of to overlapping matching technique described in I]. Reliabiltt, is obtained
surfaces, as well as the simpler case of motion parallax due to a sensor
moving through an otherwise stationary environment. We then show by dealing only with methods able to iniegrale flov, field in-
hos the approach can be extended to identify which side of a dynamic formation over relative]) large neighborhoods so as to reduce
occlusion boundary corresponds to the occluding surface. The funda- the intrinsic noise in fields determned from real iniage
mental principal involved is that at an occlusion boundary, the image sequences.
of the surface boundary moves with the image of the occluding surface.
Such information is important in interpreting dynamic scenes. Results
are demonstrated on optical flows fields automaticall) computed from 1l. BOUNDARY DFTICTiON
real image sequences.

Conventional edge operators detect discontinuilies i imageIndex Terms-Dynamic occlusion, dynamic scene analysis. edge de- luminence. These discontinuities are difficult to interpret.
* tection, optical flows,visual motion.

however, because of the large number of factors that can pro-
duce luminence changes. Boundaries in optical flov can arise
from many fewer causes and, hence, are often more inform-

1. INTRODtCTION tive. If a sensor is moving through an otherwise static scene, a
discontinuity in optical flow occurs only it there is a discon-A N optical flow field specifies the velocity of the image tinuity in the distance front the sensor to the visible surfaces

of points on a sensor plane due to the motion of the sen- on either side of the flov, boundar 121 . Discontinuitics in
sor and/or visible objects. Optical floss can be used to est le fimaefo will occur for all visible discontmnuitic in depth, ex,:cep:
aspects of sensor and object motion, the position and orienta- for viewing angles directly toward or away front the direction
tion of visible surfaces relative to the sensor, and the relative of sensor motion. If objects are moving with respect to one
position of different objects in the field of view. As a result, another in the scene, then all discontinuities in optical flow
the determination and analysis of optical flow is an important correspond either to depth discontinuities or surface bound-
part of dynamic image analysis. In this paper, we develop an aries, and most depth discontinuities correspond to flos

* operator for finding occlusion boundaries in optical flow fields. discontinuities.
We deal exclusively with dynamic occlusions in which flow The use of local operators to detect discontinuities in optical
properties differ on either side of the boundary. The operator flow has been suggested by others. Nakayama and Loomis 131is effective for both motion parallax, when a sensor is moving propose a "convexity function" to detect discontinuities in

through an otherwise stationary environment, and for more image plane velocities generated by a moving observer. Theirgeneral motion in which multiple moving objects can be in the function is a local operator with a center-surround form. That
field of view. The multiple moving object situation is more dif- is, the velocity integrated over a band surrounding the center
ficult because boundaries are marked by almost arbitrary com- of the region is subtracted from the velocity integrated overbinations of changes in magnitude and/or direction of flow. the center. The specifics of the operator are not precsly

stated, but a claim is made [3, Fig. 31 that the operator returns
Manuseripr received June 1, 1984; revised February 14, 1985 Ree- a positive value at floA discontinuities. (In fact, most reason-

ommended for acceptance by W. E. L. Grimson. This work was sup- able formulations of their operator would )ield a value of 0 at
ported by the National Science Foundation underGrant MCS-81-05215. the boundary, with a positive value to one side or thl other.)
the Air Force Office of Scientific Research under Contract F49620-83- Clocksin 121 develops an analysis of optical flos fields gen-
0140, and by Zonta International.
W. 8 Thompson and V. A. Berzins are with the Department of Co. erated when an observer translates in a static environment. He

puter Science. University of Minnesota, Minneapolis, MN 55455. shows that, in such circumstances, discontirniu ies in the mag-
K. M. Mulch was with the Department of Computer Science, Univer- nitude of flow can be detected with a laplacian operator. in

sity of Minnesota, Minneapobs, MN 55455. She is nos, with the Depart-
ment of Computer Science, Arizona State Universit), Tempe, AZ particular, singularities in the Laplacian occut at discoitinuities

in the flow. He also showed that, in this restricted environ-
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ment, the magnitude of optical floay at a particular image point The effect of this approjh is to idcntlif edF p ink %sCJ(

is inversely proportional to distance, and the distances can be the intensity of the blurred image is locall. steepest. Mort

recovered to within a scale factor of observer speed. It is thus precisely, an edge can be defined as a peak in the first diret-

trivial to determine which of two surfaces at an edge is occlud- tional derivative, or as a zero crossing in the second directional

ing, for example, by simply comparing magnitudes of the two derivative. At an edge, the second directional derivative has
surface velocities, even when observer speed is unknown, zero crossings in almost all directions, but the preferred direc-

For this restricted situation in which a sensor moves through tion is normal to the locus of the zero crossings, which is the

an otherwise static world same as the direction where the zero crossing is steepest for
fr(h) linearly varying fields [5]. For vector images such as optical

flw(i')=f,(x ) r(.;) (1) flow fields, the directional derivatives are vector valued, and

we want the magnitude of the first directional derivative to
where at an image point ,flow(x) is the optical flow (a two- have a peak.

dimensional vector), f, is the component of the flow due to This extension to tAo-dimensional flow fields is relatively
the rotation of the scene with respect to the sensor, fr is de- straightforward. The optical flo field is first split into sepa-
pendent on the translational motion of the sensor and the rate scalar components corresponding to motion in the x and
viewing angle relative to the direction of translation, and r is y directions. The 7'2G operator is applied to each of these

the distance between the sensor and the surface visible at x component images, and the results combined into a component-
141. For a fixed ;, flow varies inversely with distance. Both wise Laplacian of the original floA field. (The Laplacian is a
f, and f, vary slowly (and continuously) with ;. Discontinu- vector operator which can be expressed in arbitrary coordinate

ities in flow thus correspond to discontinuities in r. Further- systems. For convenience, we choose a Cartesian coordinate

more, it is sufficient to look only for discontinuities in the system.) This componentwise Laplacian operation is imple-

magnitude of flow. This relationship holds only for relative mented by subtracting two componentwise blurred versions of

motion between the sensor and a single, rigid structure. When the original. With the proper set of weak assumptions, discon-

multiple moving objects are present, (1) must be modified so tinuities in optical floA correspond to zeros in both of these
that there is a separate f.) and f I) specifying the relative mo- component Laplacian fields. At least one of the components

tion between the sensor and each rigid object. Discontinuities will have an actual zero crossing. The other will have either a

associated with object boundaries may now be manifested in zero crossing or will have a constant zero value in a neighbor-

the magnitude and/or direction of7flow. hood of the discontinuity. If the componentwise Laplacians

Boundary detectors for optical flow fields should satisfy two are treated as a two-dimensional vector field. discontinuities
criteria: I) sensitivity to rapid spatial change in one or both of are indicated by directional reversals in the combined field.

the magnitude and direction of flow, and 2) operation over a Because of the discrete spatial sampling and a ',rjeit of noisc

sufficiently large neighborhood to reduce sensitivity to noise sources, the zeros or zero crossings in the two components of

in computed flow fields. It is desirable to achieve the second the field may not actually be exactly spatially coincident. Thus.

criterion without an unnecessary loss of spatial resolution in exact reversal is not expected, and a range of direction changes

locating the boundary or a need for postprocessing to reduce of about 180' is accepted. A threshold on the sum of the vec-

the width of detected boundaries. The zero-crossing detectors tor magnitudes at the location of the flip is used to ensure that

of Manr and Hildreth 151 may be extended to optical flow the zero crossing is of significant slope. This is analogous to
fields in a manner that achieves both objectives [6]. For scalar the threshold on zero-crossing slope which is often used in prac-

fields (e.g., intensity images), zero-crossing edge detection pro- tice when zero-crossing techniques are used on intensity im-

ceeds as follows. I) Smooth the field using a symmetrical Gauss- ages, and serves to filter out small discontinuities.

ian kernel. 2) Compute the Laplacian of the smoothed func- The approximations made by the computations described

tion. 3) Look for directional zero crossings of the resulting above will be good if the variation of the field parallel to the

function (e.g., look for points at which, along some direction, edge is much more uniform than the variation normal to the

the function changes sign). Under a set of relatively weak as- edge. For scalar images, exact results will be obtained if the

sumptions, these zero crossings can be shown to correspond to intensity varies at most linearly along the edge contour (5].

points of most rapid change in some direction in the original For vector images, the field must vary at most linearly in some

function. The convolution with a Gaussian provides substan- neighborhood of the edge contour, so that the assumptions re-

., tial noise reduction and, in addition, allows tuning of the quired are slightly stronger than for scalar images. Appendix I

method for edges of a particular scale. Steps I ) and 2) involve contains the analysis for the case of vector images.

evaluating the function V 2 G * I, where G is a Gaussian kernel, Two examples of this technique applied to real images are

* is the convolution operation, and I is the original image. The shown below. In both examples, the objects are toy animals
effect of the V2G operator can be approximated by blurring with flat surfaces, shown moving in front of a textured back-

the original function with two different Gaussian kernels of ground. In Fig. )(a). the tiger translates parallel to the image

appropriate standard deviation, and then taking the difference plane from right to left between frames I and 2. The elephant

of the result. This formulation results in computational simpli rises off its front legs between frames I and 2, effectively io-

fications 171, 18] and also corresponds nicely to several phys- tating about an axis at its hind feet oriented perpendicularly to

Iological models that have been proposed for early visual the image plane The elephant also translates slightly to the

processing. left parallel to the iT11J.c plane. The optical flov. vectors, shown
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(d) (d)

Fig I (a) Image pau (b) Optical floA. (c) Detected edge overlaid onto Fig. 2. (a) Image pau (b) Optical flov.. (c) Detected edge overlaid onto

flou field. (d) Dectecicd edge overlaid onto first frame of sequence. floA field. (d) Detected edge overlaid onto first frame of sequence

in Fig. I(b), were obtained by relaxation labeling token match- overlaid on the original flow field, and in Fig. I(d) the points

ing, as described in I I. Notice that the floA vectors on the are overlaid in white on the first image of the pair. The edge

elephant and tiger have approximately the same magnitude but points form a good boundary between the discontinuous opti-
differ in direction. Each component of this flow field was con- cal flow vector fields (Fig. 1(c)] • but because these fields are

volved with approximated Gaussians of standard deviations so sparse, the edge points match only the approximate loca-

3.65 and 5.77. The ratio of these standard deviations is 1 :1 .6. tions of the true edges (Fig. I(d)] .
The two convolved flow fields were suhtracted, and the re- In Fig. 2(a), both the tiger and elephant are translating to

sulting vector field was searched for reversals in vector direc- the right, parallel to the image plane between frames I and 2.

lion, A boundary strength threshold was chosen to eliminate The flow field shown in Fig. 2(b) was obtained in the same
noise points due to small, local variations in estimated flow, manner as in Fig. 1(b). The direction of the flok vectors on
In Fig. 1(c), the points where reversals were found are shown both animals is approximately the same, but there is a dis-
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continuit) in magnitude, Two Gaussian filtered versions of
the flow fields were obtained with standard deviations of 3.16
and 5.16 a ratio of :1 .6. The locations of vector reversal,, rime to
resulting from differencing the two filtered fields are shown . .. . .
in Fig. 2(c) and (d). (a)

The width of the Gaussian kernel used in the V2G operator,
the density of the computed optical flow, field, and the spatial...

variability of flow all interact to affect the performance of the time t .

boundary detection. As with the use of zero-crossing detectors
for scalar fields, it may be desirable to use a range of kernel
sizes and then combine the results to obtain a more robust in- (b)
dicator for the presence of a boundary. While zero-crossing Iif 3. Optical flo%. at a boundary at two instants in time. (a) SurfacC

to the left is in front. (b) Surface to the itfht is in f 10nt.
contours are, in principle, connected, the use of a threshold
on the slope at the zero crossing results in some portions of To formalize the analysis, we need to distinguish the optical
the boundary being missed. In practice, zero-crossing bound- flow of the boundary itself from the optical flow of surface
ary detection for both scalar and vector fields often requires points. The flow of the boundary is the image plane motion
such thresholds to avoid significant problems with false bound- of the boundary, which need not have any direct relationship
ary indications in slowly varying regions of the fields. Work to the optical flow of regions adjacent to the boundary. The
still needs to be done on better techniques for selecting zero magnitude of the optical flow of boundary points parallel to
crossings that correspond to true boundaries, the direction of the boundary typically cannot be determined,

particularly for linear sections of boundary. Thus, we will limit
Ill. IDENTIFYING OCCLUDING SURFACES the analysis in this section to the component of optical flow

When analyzing edges between dissimilar image regions that perpendicular to the direction of the image of occlusion bound-
arise due to occlusion boundaries, it is important to determine aries. As a result, if the flow on both sides of the boundary is
which side of the edge corresponds to the occluding surface, parallel to the boundary, the boundary will still be detectable,
Occlusion boundaries arise due to geometric properties of the but the method given here will provide no useful information
occluding surface, not the occluded surface. Thus, while the about which surface is occluding.
shape of the edge provides significant information on the struc- We can now state the basic principle more precisely. Choose

- ture of the occluding surface, it says little or nothing about the a coordinate system in the image plane with the origin at a par-
l structure of the surface being occluded. In situations where a ticular boundary point and the x axis oriented normal to the

sensor is translating through an otherwise static scene, any sig- boundary contour. with x > 0 for the occluding surface. The
" nificant local decrease in r in (1) increases the magnitude of camera points in the : direction, and the image plaic is at

, flow. Thus, at a flow boundary, the side having the larger mag- z 0 0. Let f,(x, Y) be the x component of optical flow at the
nitude of flow will be closer, and thus will be occluding the point (x, y). Let fb be the x component of the flow of the
farther surface. Sensor rotation complicates the analysis, while boundary itself at the origin (i.e., fb is the image plane veloc-
if objects in the field of view move with respect to each other, ity of the boundary in a direction perpendicular to the bound-
there is no direct relationship between magnitude of flow and ary). Then, for rigid objects,

- r. Surfaces corresponding to regions on opposite sides of a f, = lim .I(x, 0) =f/ (0, 0). (2)
boundary may move in arbitrary and unrelated ways. However, x 0.
by considering the flow values on either side of the boundary We will show that this relationship is true for arbitrary rigid
and the manner in which the boundary itself changes over time, body motion under an orthographic projection. For a single
it is usualy possible to find which side of the boundary corre- smooth surface, perspective projections are locally essentially
sponds to the occluding surface, although the depth to the sur- equivalent to a rotation plus a scale change, although the anal-
faces on either side cannot be determined. ysis is more complex. Equation (2) specifies a purely local con-

., % The principle underlying the approach is that the image of the st raint and, as the hmit is taken from only one side of the
occluding contour moves with the image of the occluding sur- boundary, is dependent on flow values on a single surface.
face. Fig. 3 illustrates the effect for simple translational mo- Thus, the limit result will hold as well for perspective projec-
tion. Shown on the figure are the optical flow of points on tions. Algorithms which utilize the result in (2) may suffer,
each surface and the flow of points on the image of the bound- however, if properties of more than a truly local area of the
ary. In Fig. 3(a), the left surface is in front and occluding the field are utilized. The instantaneous motion of a rigid object
surface to the right. In Fig. 3(b), although the flow values asso- relative to a fixed coordinate system can be described with re-
ciated with each surface are the same, the left surface is now spect to a six-dimensiona!, orthogonal basis set. Three values
behind and being occluded by the surface to the right. The specify translational velocity, the other three specify angular
occluding surface cannot be determined using only the flow velocity. These six coordinates of motion can be conveniently
in the immediate vicinity of the boundary. The two cases can classified into four types: translation at constant depth,transla-
be distinguished because, in Fig. 3(a), the flow boundary deter- tion in depth, rotation at constant depth, and rotation in depth.
mined by the next pair of images will be displaced to the left, Translation at constant depth is translation in a direction par-
while in Fig. 3(b) it will be displaced to the right. allel to the image plane. Translation in depth is translation per-
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Is pendicular to the image plane. Rotation at constant depthI is
rotation around an axis perpendicular to the image plane. Ro-
tation in depth is rotation around an axis parallel to the image -gfl'rl PoCI-1

plane. Any instantaneous motion can be described as a comrn-
bination of these four types. For orthographic projections,
translation in depth has no effect on the image. Thus, we need ()(b)
to show that the above relationship relating boundary and sur-
face flow holds for the three remaining motion types.

A point on the surface of an object in the scene that projects

erating point of the occlusion boundary. The family of gen- Fir. 4. (a) Generating contour at a sharp boundary remains fixed to the

cratng oins dfins agenratig cntor, hic lis aong object surface. (b Gernerating contour at a smooth boundary1 Move$
* crtin ponts efies geeratng onturwhic lis aong relative to the object surface.

the extremal boundary of the object with respect to the sen-
*sor. For both translation and rotation at constant depth, the and the generating point itself may not maintain a fixed rela-

generating contour remains fixed to the occluding surface over tionship in three-space. The property described in (2) still
time. Thus, the boundary and adjacent points move with ex- holds for rotation in depth, however. The formal Proof Of
actly the same motion. As a result, the projection of the sur- this assertion is relatively complex and is given in Appendix B.
face flow in the direction normal to a particular boundary point (The Appendix actually shows that the limit of surface flow is
is identical to the projection of the boundary flow in the same equal to boundary flow for rotation of smooth objects around
direction. (The result is strictly true only for instantaneous an arbitrarily oriented axis.) Informally, the result holds be-
flow. Over discrete time steps, boundary curvature will affect cause the surface is tangent to the line of sight at the generating
the projected displacement of the boundary.) point, so that any motion of the generating point %kith respect

The analysis of rotation in depth is complicated by a need to to a point fixed to the surface is along the line of sight. The
distinguish between sharp and smooth occlusion boundaries, difference between the motion of the surface near the generat-
based on the curvature of the occluding surface. The intersec- ing point and the motion of the generating point itself is a vec-

* tion of the surface of the object and a plane passing through tor parallel to the line of sight and, hence, does not appear in
the line of sight to the generating point and the surface normal the projected flow. This means that the motion of the bound-
at the generating point defines a cross section con~tour. The ary in the x direction will be the same as that of a point fixed
cross section contour and the generating contour cross at right to the Surface at the instantaneous location of the generating
angles at the generating point. Sharp boundaries Occur when point. The limit property holds because the surface flow varies
the curvature of the cross section contour at a generating point continuously with x in the vicinity of the generating point, as
is infinite. Smooth boundaries occur when the curvature is long as we restrict our attention to points that are part of the
finite, same object.

Sharp generating contours will usually remain fixed on the To develop an algorithm for actually identifying the occlud-
object surface over time. (Exceptions occur only in the infre- ing surface at a detected boundary, we will start by assuming
quent situations in which, due to changes in the line of sight only translational motion is occurring. (Violations of this
with respect to the object, either sharp boundary becomes assumption are discussed below.) According to (2), we need
smooth or a flat face on one side of the generating point lines only look at the flow at the edge point and immediately to
up with the line of sight.) Smooth generating contours will either side to determine which side corresponds to the occlud-
move along the surface of the object any time the surface oni- ing surface. In practice, however, this in inadequate. Edges
entation at a point fixed to the surface near the extremal bound- will be located imprecisely in each frame due to a variety of
ary is changing with respect to the line of sight. Fig. 4 shows effects. This imprecision is compounded when the location of
examples of both possibilities. The figure shows a view from edge points is compaied across frames to determine the flow
above, with the sensor looking in the plane of the page and the of the edge. By considering the pattern of change in the
objects rotating around an axis perpendicular to the line of Laplacian of the optical flow field, however, a simple binary
sight. In Fig. 4(a), an object with a square cross section is being decision test can be constructed to determine which surface
rotated. Fig. 4(b) shows an object with a circular cross section. velocity most closely matches that of the edge. As before, we

For sharp boundaries, a surface point close to a generating will use a coordinate system with its origin at the location of
point in three-space projects onto the image at a location close some particular boundary point at a time to, the x axis oriented
to the image of the generating point. The surface point and normal to the orientation of the boundary, anid consider only,
the generating point move as a rigid body. For rigid body mo- flow., the projection of flow onto the x axis. In this new co-

tion, differences in flow between the image of two points go ordinate system, positive velocity values will correspond to
to zero as the points become coincident in three-space. As a motion to the right. We will assume that the flow field in the

project to the same flow values as the generating point itself. The algorithm developed here is unaffected by constants added
For smooth boundaries, the situation is more complex. The to the flow field or by applying positive multiples to the mag-

surface points corresponding to the boundary may change over nitude of flow. Therefore, to simplify analysis, normalize the
time, so that points on the surface near the generating point flow field by subtracting a constant value f. such that the pro.
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Nu, t 1, t,~ il .i i : Iudc %%il h]I e nor nw] icl it, I aid I jic../
P J- I)]. Thle lc ,Ultng step cje can" haxe one

of t~k possible shapes, depeinding upon whether thle surface to
the left is. after scaling and normalizing, mloving to1 the left or t.)(b)

* to thle right (see Fig. 5).

Wheti the t% u possible velocity functions are convolved with
aJuir blur ring kernel, thle iesultinu fun,:tionb are shosm n
Ini Fi,_ 5(a ) and (b)I. The Ldplaciati of tlies I utinn in thle
direction perpendicular to the edge is equal to the second derivi-
ti~c, . nLd is shosln in Fig. 5(c) and (d). These t,,o cases maN d
he de cnbedl arralyticallk as follows.

Cast 1. Gi~erli,,h step function

A > 0(3)

- ' corimlke six %kith a Gaussian blurrinig function g(.v I.

X ~~~ ~~~(4) 1t 1. Sn 1,1 1 CJ Ili J nf11 itd& t!'1-. 1 .. C j fl. 1 fI 2S
.0 a~.nd (d) L~pL, i.in L' h itic un.,' Ii (.i and (h. (e) and ii) I 1%,

Let si 2, = 'n + I here px,ssrbkj loctiion' o' thc L'tt~ rc aftIC anl Intl!\at (11 ti11
Tit, disik d toIvL indirea , lit u: liln ~ t: Lcu!k c it edyc mOt c'

x,1 x>0.

* Terat the origin will be positivec N uie that inl boil cases, %kheii
thle left Surface IS thle occULIIIe Su-7face, thle signl at thle origin

I ~Lill become negative, and M ici; tile right ui . is oceluditig.
* - oV ~ . 5)thle sign at the origin wkill bee tjflC posit i~ . Tin> IS illustr1ated

in, Fig. vic) and (f I It the ( -,i,_;7-!I. UM0r 't e,' c *.d i:IC t %

C; \ff7T t normal to thle edgL for wxhich the second directional derivative

Therefore, of optical flo\A is positive, evaluatec] at the location of the edge
at 10, points toward the occluding surface. (The approach is

*h'(x)K<O whe n x <0 similar to that used in (91 to determine the direction of mo-
I'~ > h >0tion of an intensity contour.) Th-iis analysis ma\ be extended
i~x s~n xto the general case where thle original step function has not been

C (ast 2 The step function for case 2 is -s(y).where s(x) and normalized. The direction of tl-e second derivative at tj must
u(x) are defined above now, howvever, be evaluated at tile point (x0 , y') + (lto~f

-2X /G (As fla is the average flcm Of the surfaCes on either side of thle
11 .1()= -C12 (9) boundary , this point may be thought of as ly ing half-wkay be-

U ~tw&en the two possible iniag( locations of thle boundary at

Therefore, time t,
In practice, difficulties may arise for very large differential

h"()> whn x<0flowks between thle t\%o surfaces. The second derivative function

11x) < 0 '.4her; X > 0. (10) li'(x) approaches zero as~a\ fiomi the zero crossing. Noise sen-
sitivity of the classification technique is likely to increase whet.

At some later time t, the entire second derivative curve thle value is smiall, It is useful to determine a guideline for the
/t'(x wiill have shifted right or left, depending upon whether size of the Gaussian blurring kernel to ensure that thle curve
the edge moves with the surface moving to the right or left, wildl be observed near its extrenia, where thle sign is mote likely
Based upon the analysis above, in Case 1, if the left surface to be correct. The fomi of thle function h"'(.x)aN be simplified
is ocuig iescn eiaiecrewl emvn ote b usiuinfraayi upss e
right and the sign at the origin will become negative. while if
the right surface is occluding, the curve will be moving left and b 2 n
the sign at the origin will be positive. In case 2, if the left sot- G ''& ~ .(2

face is occluding, the curve wkill be moving to the left and the Then, in case I
sign at the origin will be negative. while if the right surface is
occluding, the curve will be moving to the nght and the sign 1 /t(-V ft) 00~ ' (13)
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The exticrinii of. (h) %ill occur at h :t I /...2 and the extrenia
of h "1 )oL om at x - o. The ratio

h "( 2.7 o )-
= 0.12 (15) (a)*h"(o) .

indicates that at ± 2.7o the magnitude of i"(x) is 12 percent of
its magnitude at the extrema, and thus is relatively close to
zero. If the noise is such that the sign will be aLcurate when
the expected Lplacian value is at least 10 percent of the ex-

trema value, then a Gaussian blurring kernel should be used of

standard deviation at least 1/2.7 of the maximum expected
magnitude of flow% of the edge. For cases where the noise pre-
sents more of a problem, a Gaussian of larger standard devia-
tion should be used. The analysis for case 2 can be performed
similarly with the same resul:.

The algorithm is implemented as follows. Optical flow fields (b)
are obtained for tsko temporally adjacent image pairs. Approx-
imation to the Laplacians of Gaussian blurred versions of these

flo%\ fields arc calculated by computing the difference of the
floss fields conrvhled with two different Gaussian kernels.

(Again, the componentwise Laplacian is used.) As before,edge
points art found in the first flov, field by searchini for vector
reversaL in the Laplaciar: of the field. At such points, the value

of the smoothed floss field obtained from the larger of the

Gaussian kernels is considered to approximate the average floss
of the t%\o surface regions on either side of the edge. This
avera. tfloss is used to find the appropriate offset to add t,
the edge locLtion to find P. a point midway betmeen the tso (e)

poss ,i L edge' l,,at!ons in the second Laplacian field Next. 1 r_ 6. a) lnriy' scq:.'rC (h D-.z:c J ;cJ boundii.,r% v. rljid onrt fhis:

tht dtrcr h,. pe rpcdi cular to the edge poirt is estrenated b\ trart of scqocn, tc) Jd nrtf,:r'r. octudr :X:, .c. Lah edgc

finding the direction of greatest change in the Laplacian of the point has a line senment projecting from it tokard the occluding
surface.

first flog field. The Laplacian of the second flow field at the

point P is then examined. The Laplacian component in the unexpected corollary of (2): in certain situations, there is no
second field perpendicular to the edge orientation points to- discontinuity in flow at occlusion boundaries. This occurs for

ward the occluding surface, pure rotation in depth of objects that are circularly symmetric,

An example of this technique applied to an image sequence rotating about their axis of symmetry,anu otherwise stationary
is shown in Fig. 6. The leopard translates from left to right with respect to the background. In such cases, the image of

approximate> equally between frames I, 2, and 3 in Fig. 6(a). the boundary over time maintains a fixed position with respect
The edge points shown in Fig. 6(b) are obtained as described to the background. As a consequence of (2), the projected sur-

in Section 11. At each edge point, an offset based on the flow face flows on either side of the boundary are identical and are

S"vector from the smoother version of the field at that point is the same as the boundary flow itself. Fortunately, the zero-

added to the location of the edge point. The resulting location crossing-based boundary detection method is still usually appli-

" is examined in the Laplacian of the second flow field. The cable, although the detected location of the boundary may be
component of this Laplacian perpendicular to the edge will displaced.

point toward the occluding surface. Shown in F'g. 6(c) are the The second comphcation involves the determination of oc-

edge points. each of wuch has an associated hne segment. The cluding surfaces. Rotations in depth produce a dynamic self.

line segment projects in the direction of the occluding surface, occlusion - the rotating object occludes sections of itself over

as detentined by the algorithm. The correct classification is time. In the situation described in the previous paragraph,self-
made for all except a few points at the bottom of the edge. In occlusion is the only dynamic occlusion occurring. In these

this region, several nearby tokens were matched in one frame circumstances, the relationship in (2) is of no direct value in

pair but not the other, significantly affecting the smoothed identifying the occluding surface. No information is available
flo%% fields in the neighborhood of the boundary. on which side of the boundary corresponds to a true occluding

surface. (The situation is truly ambiguous in that two very dif-
-, IV. ROTATIONAL MoTIoN ferent classes of spatial organizations can produce the same flow

Rotation in depth introduces several complexities for the pattern.) If the rotating object is also translating relative to the

analysis of optical floss at occlusion boundaries. The first is an background, if the object is not rotationally symmetric, or if it
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L. not totatinp atound an am, , ofI , sy c' . th' (2) wIl. In
% principle, correctly identify the occludinE surface. Difficulties u 4 ,

arise in practice, however, because the algonthn given above

% depends on surface floA in the neighborhood of the boundary, u aL/,.  (17)
not just at the edge. In the presence of rotation in depth, mis- [ ~ U ~
classifications are possible, particularly if no translation relative -12 ,- V 21
to the background is occurring and/or the rotating object is =u ' 

+ -
small, leading to rapidly changing flow values near the extremal L X L ax
b o u n d a ry . [ a l l a l l, a I,, a 1

Rotation also complicates inferences about relative depth + 2u u. ax ar ax a J
based on the analysis of occlusion boundaries. For translational

* motion, the occluding surface on one side of a boundary is riec- 17X '~ 2 ra , 21
essarily in front of the occluded surface. For rotation in depth, +uyLLayJ+1jayJ (8

the occluded and occluding surfaces are on the same side of
the boundary, and no definitive information is available about -2 aV2 a+' av av'12
the surface on the other side of the boundary. (Reference = a x a ax a), a),
[101 shows an example in which a nonrotating surface on (19)
one side of a boundary is in front of a rotating surface on the
other side of the boundary.) One approach to determining the The partial derivative of this quantity can be simplified as
actual relative depth involves first determining whether or not follows:
rotation in depth is actually occurring. Such as analysis is be- a a I, a'v r a l

yond the scope of this paper (see Il ]). As an alternative, an I = -U1x 2ua[- + 2u.u,
analysis of surface regions that ate appearing or disappearing a
due to dynamic occlusion gives information about the occluded (20)
surfaces at a boundary I 10]. The method described here gives r- a" av 1 a'2
information about the occluding surface. By combining the =2uxu, +u-- L--21
two approaches, self-occlusion is recognized by noting a bound- a a, ax(
ary where one side is marked as both occluding and occluded. ar1'

= 2u(u - V1) - - (22)
V. CONCLUSION

since a V/a is constant on A'. For the same reason,a' V/ay- =Motion-based boundary detection is sensitive only to depth 0 and a' v/ax 2 = V2 ' Therefore. a/ax -'. has a zero
discontinuities and/or object boundaries. Thus, unlike inten- V V
sity-based edge detection, all detected edge pointsare of direct crossing whenever ux(u • VI1) V'V does. But JVI' -uj has
significance to the interpretation of object shape. On the other an extremum in the x direction whenever a/ax IV V u 2 has
hand, significant edges will not be detected unless there is per- a zero crossing. a
ceived motion between the surfaces on either side. Motion- Whenever the Laplacian V2V has a zero crossing, so must
based analysis offers another significant advantage. In most ux(u - VV) - V2V, except when u,(u • VV) = 0, which is un-
cases, the side of a boundary corresponding to the occluding likely because real edges are places with steep gradients. Zero
surface can be identified. As we have shown, this is possible crossings in the Laplacian will therefore almost always corre-
for general motion, not just for a sensor moving through an spond to extrema in the magnitude of the directional deriva-
otherwise static environment. This determination is quite dif- tive, with respect to almost all directions, It is possible for the
ficuli using only static information, and has received only little magnitude of the directional derivative to have an extremum
attention (e.g., 1121). without a zero in the Laplacian because the component at right

angles to the preferred direction defined by u - V V need not
APPENDIX A be small. If there is no variation of the field parallel to the

The following is an analysis of the appropriateness of using edge, then the steepest directional derivative occurs in the direc-
zero crossings in the componentwise Laplacian of a flow field tion normal to the edge , and if the variation parallel to the edge
to detect contours of maximal rate of change in the flow field. is much less than that normal to the edge, as we expect for

Theorem. Let V be a twice continuously differentiable vec- most images, then the steepest directional derivative occurs inTeoem, Let be a twenneigh continuouslyiferni be o n a direction nearly normal to the edge. If we choose u in the xtot hield, let N be an open neighborhood containing the origin direcinthnu-V wlbeaafetoaIaxsohttesuch that aV/ay is constant on N, let L be the intersection of drction, then u • VV. will be parallel to aul/ax, so that the
N and the y axis, and let u be a unit vector. Then o above theorem states the component of the Laplacian in thedirection parallel to the difference in the flow on both sideshas an extremurn in the x direction on L if and only if ", o h onaywl aeazrrsig h alca a

(u • V V). V2 V has a zero crossing on L.
Justification: The magnitude of the directional derivative in fail to have a direction reversal at an edge only if the compo-

the u direction is nent of the Laplacian at right angles to the flow difference is

not small, which occurs when the normal component of the-(VV. -u)' +<VV,. •u)' (16) flow gradient at an edge is changing in direction more rapidl)

. -
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thanit is changing in magnitude. Such situationw do not appear Ip(O, 41) n] n siT C, cos 0 -t n) sm 1, sin 0 + n/ cos <,
to he common in real optical flows, and can occui only when
the unfiltered flow is changing appreciably in a neighborhood (2t,}

of the edge for at least one of the two surfaces. For the case where p is the unit vector parallel to p. Since the generatitiF
of a boundary between two surfaces with distinct uniform point is on the extremal boundary of the object, x must have
flows on each surface, the smoothed Laplacian has a directional an extremum at the generating point for variations in both 0
zero crossing in all directions except along the boundary. In and 4. This leads to
that direction, the value of the smoothed Laplacian is zero. x ,R(O - )

The extremum can be either a maximum or a minimum. A - = o = 0p(B, 4) n]
maximum is of course desired, and minima are discarded in 210

practice by requiring the slope of the zero crossing to be suffi- a
ciently steep. While this is not a guaranteed test, it works in +R(O - 4,4) - [p(O,41).h] (27)
almost all cases because of the Gaussian filtering applied to

the images before the Laplacian is calculated. Minima in the ax R(O - , )

gradient usually correspond to areas where the field is uniform, ao O )

and due to the tails on a Gaussian curve, gradients near the
minima tend to be small, ith small values for derivatives of + R(O - V,, 0) ap(O, 0) n (2s

al orders.

APPENDIX B for 0 = e0, 0 = Og" Let xg denote the x coordinate of the pcn

This Appendix contains the analysis showing that the limit erating point. From (25), the flog of the boundar, k,

of surface flo%% is equal to boundary flow for the rotation of follows:
smooth objects for orthographic projections. Any motion of a dxg [d n

rigid body can be described by giving the trajectory of an arbi- ft, = dt t R(O - , 4) [p(O, )n

trary point attached to the body and the instantaneous rotation 0= C

about some axis passing through that point. Define a set of

Cartesian axes (X, Y, Z) with the origin at the distinguished i)RO- ,) dO d4
point on the body and with the Z axis along the axis of rota- = [p(O, 0) n] d---) d t

tion, and let (r, 6, 0) be spherical coordinates with respect to d dt

these axes. Let the orientations of the axes (X, Y,Z) be fixed a dO

with respect to the axes (x, ,z) of the image plane coordinates, R p(O. ) di

so that the angular velocity of an arbitrary rotation is the same
in both coordinate systems. Let the surface of the body be aR(p - 0 dog+ I p(O,4)-n I -
described by i41 dt

r= R(0 - (t), 4) (23) aI deg

where 4(0) = 0, so that r = R (0, 4p) at time t = 0. The param- R- dt

eter a = 0 - 4(t) is the longitudinal angle of a point fixed to evaluated at 0 =O,4= g5,. From (27),(28), and (26) e ,ci
the surface at t = 0, and points with constant values of a and
0 rotate along with the surface. Since 0 = a + (t), w =d//dt - d4/ aR(O - , p(O, ) "hi

gives the angular velocity of the object about the Z axis. dt 210

At some particular instant of time, let Gbe a generating point
(r,,, 0, ) and n be the unit surface normal at G. Since G is a d R ((

generating point and orthographic projection is involved,n will dt 2O

be parallel to the image plane. The normal component of the = WR(Og - /, Og) sin ¢[1-nx sin 0, + n y cos 0,] (32
flow for an arbitrary point p = (r, 0, 41) fixed to the surface is

as follows: -fx(0,0) (33)

f,(p) (f p) n using (24) and do/dt = w. This establishes (2) for arbitrary
orientations of the axis of rotation with respect to the image

= wR(O - 4, 0) sin of-nx sin 0 + n y cos 0] (24) plane, assuming an orthographic projection.

where f) is the vector angular velocity of magnitude w and
oriented along the Z axis. The orientation of fl and n may be AcKNOWLEDGMEN1
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Analysis of Accretion and Deletion at Boundaries
in Dynamic Scenes

KATHLEEN M. MUTCH, MEMBER, ILEL, AND WILLIAM B. THOMPSON, MEMBER, IEEY

Absrmct-In dynamic scenes, the presence of object boundaries is at a boundary is being occluded. To recover the information
often signaled by the appearance or disappearance of occluded surfaces available from such regions, it is necessary to determine both
over time. Such regions of surface accretion or deletion can be found how regions Of accretion and deletion in the imagery may be
using matching techniques similar to those used to determine optical
flow in an image sequence. Regions in one frame that are not ade- identified, and what characteristics of such regions permit
quately matched by any region in previous frames correspond to accre- identification of the occluded surface.
tion. Regions that have no matches in subsequent frames correspond to This paper describes a scheme to locate regions of accretion
deletion. In either case, an occlusion boundary is present. Further- and deletion, and to identify occluding surfaces at a boundary
more, by associating accretion or deletion regions with a surface on one
side of a boundary, it is possible to determine which side of the bound- using these regions. A technique which matches image fea-
ary is being occluded. This association can be based purely on visual tures in two frames is used to determine feature displacement
motion-the accretion or deletion region moves with the same image on the image plane. Areas in the image with a high percentage
velocity as the remaining visible surface to which it is attached, of features which are unmatchable in a previous or subsequent

image are identified as accretion or deletion regions, respec-Index Terms-Dynamic scene analysis, edge detection, occlusion, op- tivel. These regions indicate the presence of an occlusion
ticaj nlow, segmentation.

boundary. Since the accretion/deletion region belongs to the
occluded surface, it will be displaced on the image plane in the

1. INTRODUCTION same fashion as nearb) areas of that surface. The occluded
surface is then identified by determining which of the two sur-OCATING object boundaries in images is an important faces adjacent to the accretion/deletion region displays a simi-

I.but difficult problem. Intensity-based edge detection faeadaetoth crin/ltorrgonisayasm-
provides difiguuls rbleingbunary-basd edgedtion i lar displacement on the image plane. This identification com-provides ambiguous or misleading boundary information in bines information about accretion and deletion with optical
many situations, such as textured regions. Motion-based tech- flow to produce a description of the occlusion boundary more
niques can provide more reliable results in these cases. At ob- complete than aow, existing technique based purly on flo

ject boundaries where occlusion occurs, surface regions will alone.

typically appear or disappear over time when motion is pres-
ent. These regions of changing visibility may be used to in- 11. PREVIOUS WORK
dicate both object boundaries and the side of the boundary
corresponding to the occluded surface. Several research efforts in computational vision have utilized

At a typical object boundary, one surface will be blocking motion information to recover object boundaries. The basic
the view of another more distant surface. In the presence of idea behind most motion-based approaches is that image plane
motion, regions of the more distant surface will often either motion, or optical flow, across the object surface will be con-
appear or disappear from view over time. Such regions are stant or slowly varying, and discontinuities in flow will occur
called areas of accretion or delction, respectively. A similar only at object edges. Previous approaches either search for
situation ariscs in stereo vision, where a region of the more discontinuities in the optical flow, or group together regions of
distant surface near an occlusion edge will be visible in one similar flow. Nakayama and Loomis 11] propose a local,
image of the pair but invisible in the other image. Thus, recog- center-surround operator for detecting object boundaries in
nition of accretion/deletion regions is a means of locating ob- flow fields. Clocksin 12] shows that zero-crossings will occur
ject boundaries in image sequences. In addition, accretion and at edge locations in the Laplacian of the magnitude of the
deletion regions will belong to the occluded surface, providing optical flow field when an observer translates through an
sufficient information to determine which of the two surfaces otherwise static environment. Thompson et al. 131, 141 dem-

onstrate that the Laplacian is useful as an edge detector in the
Manuscript received April 30, 1984; revised October 22, 1984. Rec- more general case of unconstrained motion. After obtaining

ommended for acceptance by Ruzena Bajcsy. This work was supported point velocities by template matching, Potter 15] groups allin part by the National Science Foundation under Grant MCS-81-05215,
the Air Force Office of Scientific Research under Contract 1-49620-83- points with the same velocity into single object regions. Simi-
0140, and by Zonta International larl). Fenneina and Thompson 161 use the spatial and lem-

K. M. Mutch is with the Department of Computer Science, Arizona poral gradients of intensity to obtain point velocities, and then
State University, Tempe, AZ 85287.

W B Thompson is with the Department of Computer Science, Unt- consider all points with similar velocities to be part of the
versity of Minnesota, Minneapolis, MN 55455 same object. Thompson 171 develops a grouping scheme
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of both idcntidl intensity and identical vch. its arc formed,

folluicd b nierging of adlacent regions based upon siiilari-
ties. or at least lack of conflict, in intensity and vclocit\ . W'Ith
the exception of Clocksin's work J21, these flow-based tech- Fku. 1. Location of an accretion/deletion region relative to the bound-
niques are unable to provide any indication of the occluded ary indicates the direction of the occluded surface In both cases
surface at an edge. shown abovc, the vertical line represents a boundary and the shadedsarea represents an accretion or deletion region. The arrow points

Accretion and deletion are fundamental to motion analysis toward the occluded surface.
based on differencing 181, 191. These techniques subtract one
image from another and then use the presence of regions of organized search is performed to match tokens from tie first
significant difference to infer properties of object boundaries to corresponding tokens in the second image using the
and motion. The approach is most effective when a reason- relaxation labeling technique described in Ill]. Possible
ably homogeneous object is moving relative to a homogeneous matches between tokens in the two frames are evaluated based
background with different luminence. Covering and uncover- on two criteria: tile similarity bettween properties of the
ing of the background leads to significant differences between tokens, and a surface smoothness measure that favors matches
frames, allowing boundaries to be located. Analysis of these with disparities similar to neighboring tokens. An important

difference regions over time can often be used to associate the apt oisparti ular t hing ten s A itan
aspect of this particular matching technique is that it can

difference region with adjacent, nonchanging areas of the determine that a token in one frame is unmatchable if no
image sequence and thereby identify which side of the bound- token in the other frame satisfies the appropriate matching
ary is being occluded. This scheme is intensity based, and criteria. By basing the analysis on the motion of tokens in the
suffers when intensity contrasts occur that are not related to image. many of the intensity contrast problems of a differ-

object structure. A textured object which changes location on encing system are circumvented.
tie image plane, for example, will produce many regions of in- Regions of accretion and deletion are identified by analyzine
tensity difference which are not accretion or deletion regions. unimatchable tokens in either image. A token may not be

Only limited experimentation has been directed at the role matchable either because the token detector failed to find the
of accretion and deletion in human perception. Kaplan I101 corresponding structure in the other image of the pair, or
showed that patterns of accretion and deletion in fields of because the corresponding token is not visible i the other
moving random dots provide sufficient information for the ieaue th arig tis ot visibleain toe t

imiage. Regions with a high ratio of unmatchable tokens to
judgment of relative depth by human subjects. In his stimuli, total tokens are likely to be regions of accretion or deletion.
a single edge separated two regions of random dots. where This niotior-based. token-matchine approach is an iplemer-
each region moved coherently. The edge "as implicit. being

-tation of Kaplans, mnodel for dclectini: such regi ins [1121
the line along which accretion ard/or deletion occurred, and Kaplan argues that accretion and deletion are detected in the
thus was not visible if all of the dots were stationary. Subjects human visual system by isolating clusters of elements of opti-
consistently perceived the more distant surface to be the one cal texture, tracking then over time, and responding when
which was undergoing accretion or deletion at a greater rate. they change in some way that is not topologically permissible.
This was true even when the implicit edge moved with a ye- Token identification is equivalent to isolating elements of
locity different than the velocity of points on either surface. optical texture; token matching serves the purpose of tracking
In these cases of inconsistent edge motion, there was more such elements over time" and analyzing unmatchable tokens is
ambiguity in the perceptions of subjects, although the statis- a response to some change which ma be due to appearance or
tically significant perception was that the surface with a disappearance of a region.
greater rate of accretion or deletion was more distant. This
suggests that both edge velocity and accretion/deletion are ir- IV. IDENTII YiNG OCCLUiDt ) SoRt ACES
portant factors in the perception of depth at an edge, but thata iNot only can accretion/deletion patterns be used to locateaccretion/deletion information may be dominant.

boundaries, they provide information that allows the identifi-

Ill. DE:TECTING AcCRE:TION/DELLETIN RLIONS cation of the side of tie boundar) being occluded. Such
information is beneficial when interpreting d\,narnic scenes.

A motion-based scheme for identifying accretion and dele- Several specific approaches are possible. though all are based
lion regions is developed here. To recover motion on the on associating the accretion or deletion region with a surface
image plane, corresponding structures in each franie of an on one side of the boundar\. That surface is the one being oc-
image pair are located. The result of this is a disparity. vector eluded. One approach relies upon the relative location of the
field, where each vector represents the change in image plane accretion/deletion region with respect to the precise position
location of a structure. (Disparity is tie discrete representa- of the image of the boundar\. 1his boundary is the actual
lion of optical flow arising from inage sequences that are dis- point of occlusion, the accretion 'deletion tegion being on the
cretely sampled in time.) This correspondence is accomplished same side of the boundary as the occluded surface. Fig. I
by token matching A token is a distinctive region in the illustrates this concept. The prinar., difficult) in this ap-
image which is identified by some predefined local operator. prOach is identifying the boundars lo~ation relativc to tile
A set of tokens is obtained for each image in the pair. and an accretion/deletion region. In partiular. motio0n-basCd edge de-
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Fig. 3. The optical flow of surfaces A and B is indicated by the vectorson those surfaces. Since neither surface exhibits any flow perpen-

dicular to the edge, there will be no accretion or deletion regions.

Fig. 2. The location of new accretion/deletion regions relative to pre- tion or deletion tokens belong. Such tokens with similar dis-
vious such regions indicates the direction of the occluded surface, parities to an accretion or deletion point lie on the occluded
The second accretion region appears to the opposite side of the first surface.
accretion region as the occluded surface. The second deletion region
occurs to the same side of the first deletion region as the occluded Three frames in an image sequence are required. Disparit)
surface. fields DI and D2 are obtained for frames I and 2, and for

frames 2 and 3, respectively. Accretion points are not visible
tection cannot locate the boundary precisely enough without in frame 1, but do appear in frames 2 and 3. Tokens first ap-
first knowing which surface is occluded. The inadequacies of pearing in frame 2, and thus having no associated match in

intensity-based edge detectors for this purpose are well known, frame I, are noted. If these tokens have a match in frame 3.

particularly when applied to textured surfaces. and if they are in a region with a high ratio of such tokens to
An alternative approach involves identifying the location of total tokens, they are considered to be points of accretion.

an accretion or deletion region relative to the location of such The disparity of accretion points is provided b D2. For ever\
a region at a previous instant in time 1131. New accretion accretion point, a search is made within a neighborhood about

regions will appear to the side of previous accretion regions the point location in frame 2. Tokens which are matched in
opposite the remainder of the occluded surface. New deletion D2, but which are not marked as accretion points are found.
regions will occur on the same side of previous deletion regions All of these tokens which have disparities similar to the accre-
as the occluded surface (see Fig. 2). A disadvantage of this tion point are considered as a cluster. A vector pointing
approach is the necessity to track and locate whole accretion/ towards the center of the cluster is assigned to each accretion
deletion regions over time. point, and indicates the direction from that point to he c -

The approach for identifying occluded surfaces from ac- cluded surface.

cretion/deletion regions which is developed in this paper re- Deletion points are visible in frames I and 2, but not frame
quires the recognition of similarities between such regions and 3. Tokens which are indicated as unmatchable in frame 2 are
one of the two surfaces on either side of the boundary. Since noted. If these tokens have a match in frame I and if the), are
the accretion/deletion region belongs to the occluded surface, in a region with a high ratio of such tokens to total tokens,

it will share certain properties with that surface. The common they are considered to be points of deletion. The disparity of
property could be intensity or texture, although the problems deletion points is provided by DI. For every deletion point,
inherent in most intensity-based analyses make these alterna- a search is made within a neighborhood about that point loca-
tives undesirable. Once again, motion-based properties may be tion in frame 1. Tokens which are matched in Dl, but which
more reliable. One such property is the disparity of tokens on are not marked as deletion points, are found. All of these
the image plane. Disparity varies slowly over the surface of tokens which have disparities similar to the deletion point are
almost all rigid objects. Accretion or deletion tokens will thus considered as a cluster. As before, a vector in the direction
exhibit disparities which are nearly identical to nearby token of the center of the cluster is assigned to each deletion point
disparities on the same surface, while token disparities on dif- and indicates the direction from that point to the occluded
ferent surfaces will usually vary. surface.

V. IMPLEMENTATION VI. LIMITATIONS

The system which was developed to detect occluded surfaces This boundary detection technique requires a moderately
from regions of accretion or deletion uses token matching to dense token set, both to find actretion/deletion regions, and
obtain disparity vector fields. Unmatched tokens in clusters of to determine image-plane displacements. This means that the
high density are classified as accretion or deletion tokens, de- two surfaces adjacent to the edge must be distinctly textured.
pending upon whether they have matches in subsequent or In addition, there must be some component of optical flow
previous frame pairs. The disparity of accretion tokens after perpendicular to the occlusion boundary, or neither accretion
their appearance, or of deletion tokens prior to their disap- nor deletion will occur. In particular, motion exactly parallel
pearance, is obtained. Nearby tokens which are not accretion to the boundary will produce no accretion or deletion regions
or deletion tokens and which have known disparities are iden- (see Fig. 3). Perspective viewing of translating objects in prin-
tified and are used to identify the surface to which the accre- ciple leads to difficulties similar to those associated with rota-
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I(. I Fig. 5. Image sequence in which thc leopard t. translating from left to
right.

is directly available abot~u tihe relative depths it, tile surfaces on
either side (if tire boUndar). Iln fact, it is possible that tile sur-
rounding surface in the image is actually in front of tile cyl-

ider [Fig. 4(b)J, yet generates the same image sequence.
A different complication occurs if the rotating object is

, €moving with respect to the background surface, the cross
_ _ a section of tile object is not circular, or the object is not rotat-

ing about its axis of symmetr). In all of these situations, ac-
cretion and/or deletion will be occurring on both sides of tile

i actual boundary. The method given above is still valid and willI identify both sides of the boundars as occluded surfaces. Tile
I problem again arises when trying to infer relative depth given

an identification of the occluded surface. The determination
of relative depth at a dynamic occlusion boundary when rota-
tion is occurring is made possible by combining accretion/dele-
tion analvsis as descrTibed ill this papeCr \,%Jth all optical 110%k

S d based approach 14]. This second technique uses the relation-
ship between tile flos of a boundary and the surface flows on
either side of the boundar\ to identif) occluding surfaces.
Accrelion/deletion allal sis locales occluded surfaces. When

taken together, both tile occlusion oif one surface by another
Fi 4. (at O'erhead vic\k of a cyUnder rotating countcl-Cokwisc and tihe selt-o-cl usioi restlltill" toni lolatlol Ill depif call beabout an as at C. in front of a stationar% background B The

v'ieser is at A. and the Line of sight is along the dotted line (b) The re,oFnied and approp1iatels iInterprcted.
rotating cylinder seen through an aperture in surface B which is now%
in front. (c) When either (a) or (b) are viewed from point A, ac- VII. EXAMPLE
cretion regions a will occur along the left edge on the cylinder, dele-
tion regions d along the right edge. While the cylinder is correctly The system implementation described above was applied
identified as the occluded surface, there is insufficient information to twice to the image sequence shown in Fig. 5, first processing
determine the relative depth between the cylinder and the surface the sequence in the order shown, then in tile reverse order. AU
atB.

images had a resolution of 128 X 128. There were approx-
iniately 1000 tokens identified in each image, and over 800 of

tion in depth (see below), as the perspective effects can be these were matched in every image pair. As is usual with
locally described as a combination of rotation and scale token matching systems, tile density of tokens (and thus dis-
change. Fortunately, the practical difficulties caused by per- parity vectors) varied across tie image, being higher in areas of
spective effects are minimal. When objects are translating in fine texture. Al II X I I square neighborhood, centered at
front of a background, the size of accretion/deletion regions tile unmatched point, was used for computing the density of
due to translation is almost always much greater than accre- unmatched tokens. This si/e was chosen to be small enough so
tion/deletion regions that appear due to effective rotation of that most of the neighborhood fell Ailhin the accrelion/dele-
the object. tion region, yet big enough to contait a reasonable number of

Certain rotations lead to potentially confusing situations tokens (usually 6 to 12). If 80 percent of the tokens in this
when analyzing occlusion boundaries. Fig. 4(a) shows an neighborhood were unmatched in the sante way as the point
overhead view of a cylinder rotating in depth. Fig. 4(c) shows under consideration. then the point was labeled "'accretion" or
tile accretion/deletion regions that arise if there is no relative "deletion." This ratio was chosen to be selectively high, and
motion between the cylinder and the background surface, yet to allow for sonic incorrect matches in tile neighborhood,
The analysis above assigns the accretion and deletion regions or sonic extension of the neighborhood out of the accretion,'
to tile cylinder. Thus, the cylinder, not the background sur- deletion region. A 31 X 31 windo%, centered at the accre-
face, is indicated as the surface being dynamically occluded. tion/deletion point, was searched to find clusters of similar
This is the correct interpretation, as the rotation in depth disparity vectors. This Si/c was choset It, be large enough to
causes the cylinder to occlude itself over time. However, while include portions of both surfake, outsidC the accrctiwn/dle-
the dynamk occlusion is correctly recogni/ed. no information tion region. yet n,, s, laryc a I,, e \lentd bevotd these sit-
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(1)2) or firsl ()l disparil) field. The hoc which cimniat.>
from each box projects toward the surfac which the alp

rilhn indicates is beinF occluded. The set of tokens to the
right of the leopard are deletion points. Tokens near the left
border of the image are accretion points, which appear as more
of the leopard moves into the field of view. Vectors associated
with these points indicate that the leopard is being occluded
by the surrounding frame. Except for six noise points, all ac-
cretion and deletion tokens have an associated vector point-
ing in tile correct direction. The noise points are not in tile

accretion or deletion regions, but rather occur in or near un-
textured regions, or on the edge of the accretion/deletion re-
gions. As a result, there are either no other tokens in the
vicinity, or else a large number of unmatched tokens in the
neighboring accretion/deletion region. These points are thus
incorrectly identified as accretion or deletion points.

Fig. 6(b) shows the results when the image sequence of Fig.
5 is processed in the reverse order. The disparity field DI is
now the set of matches for frames 3 and 2, and D2 for frames

(a) 2 and 1. Tokens to the right of the leopard are now accretion
points, and tokens near the left border of the image are dele-
tion points. Once again, except for nine noise points, all
vectors correctly point toward the occluded surface. The noise
points are due to the same causes described in the previous
paragraph.
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